Log in

Sequence and Phylogenetic Analyses of 4 TMS Junctional Proteins of Animals: Connexins, Innexins, Claudins and Occludins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Connexins and probably innexins are the principal constituents of gap junctions, while claudins and occludins are principal tight junctional constituents. All have similar topologies with four α-helical transmembrane segments (TMSs), and all exhibit well-conserved extracytoplasmic cysteines that either are known to or potentially can form disulfide bridges. We have conducted sequence, topological and phylogenetic analyses of the proteins that comprise the connexin, innexin, claudin and occludin families. A multiple alignment of the sequences of each family was used to derive average hydropathy and similarity plots as well as phylogenetic trees. Analyses of the data generated led to the following evolutionary and functional suggestions: (1) In all four families, the most conserved regions of the proteins from each family are the four TMSs although the extracytoplasmic loops between TMSs 1 and 2, and TMSs 3 and 4 are usually well conserved. (2) The phylogenetic trees revealed sets of orthologues except for the innexins where phylogeny primarily reflects organismal source, probably due to a lack of relevant organismal sequence data. (3) The two halves of the connexins exhibit similarities suggesting that they were derived from a common origin by an internal gene duplication event. (4) Conserved cysteyl residues in the connexins and innexins may point to a similar extracellular structure involved in the docking of hemichannels to create intercellular communication channels. (5) We suggest a similar role in homomeric interactions for conserved extracellular residues in the claudins and occludins. The lack of sequence or motif similarity between the four different families indicates that, if they did evolve from a common ancestral gene, they have diverged considerably to fulfill separate, novel functions. We suggest that internal duplication was a general evolutionary strategy used to generate new families of channels and junctions with unique functions. These findings and suggestions should serve as guides for future studies concerning the structures, functions and evolutionary origins of junctional proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. Figures on the website: (http://www-biology.ucsd.edu/~msaier/transport/ ); Fig. S1 Multiple alignment of all connexins; Fig. S2 Multiple alignment of the 22 human connexins; Fig. S3 Phylogenetic tree of the 22 human connexins; Fig. S4 Multiple alignment of all innexins; Fig. S5 Multiple alignment of all claudins; Fig. S6 Multiple alignment of all occludins.

References

  1. Y. Ando-Akatsuka M. Saitou T. Hirase M. Kishi A. Sakakibara M. Itoh S. Yonemura M. Furuse S. Tsukita (1996) ArticleTitleInterspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J. Cell Biol. 133 43–47 Occurrence Handle1:CAS:528:DyaK28**tVCht7c%3D Occurrence Handle8601611

    CAS  PubMed  Google Scholar 

  2. M.S. Balda C. Flores-Maldonado M. Cereijido K. Matter (2000) ArticleTitleMultiple domains of occludin are involved in the regulation of paracellular permeability. J. Cell. Biochem. 78 85–96 Occurrence Handle10.1002/(SICI)1097-4644(20000701)78:1<85::AID-JCB8>3.3.CO;2-6 Occurrence Handle1:CAS:528:DC%2BD3cXksVGqtrY%3D Occurrence Handle10797568

    Article  CAS  PubMed  Google Scholar 

  3. C.G. Bevans M. Kordel S.K. Rhee A.L. Harris (1998) ArticleTitleGating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J. Biol. Chem. 274 5581–5587

    Google Scholar 

  4. E.G. Beyer D.L. Paul D.A. Goodenough (1987) ArticleTitleConnexin 43: A protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105 2621–2629 Occurrence Handle1:CAS:528:DyaL1cXktFyqu7s%3D Occurrence Handle2826492

    CAS  PubMed  Google Scholar 

  5. O.W. Blaschuk T. Oshima B.J. Gour J.M. Symonds J.H. Park C.G. Kevil S.D. Trocha S. Michaud N. Okayama J.W. Elrod J.S. Alexander (2002) ArticleTitleIdentification of an occludin cell adhesion recognition sequence. Inflammation 26 193–198 Occurrence Handle10.1023/A:1016571830091 Occurrence Handle1:CAS:528:DC%2BD38XlsFKnsLs%3D Occurrence Handle12184633

    Article  CAS  PubMed  Google Scholar 

  6. O.R. Colegio C.M. Van Itallie H.J. McCrea C. Rahner J.M. Anderson (2002) ArticleTitleClaudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. 283 C142–C147 Occurrence Handle1:CAS:528:DC%2BD38XlsVCrsrw%3D

    CAS  Google Scholar 

  7. M. Cordenonsi F. Turco F. D'atri E. Hammar G. Martinucci F. Meggio S. Citi (1999) ArticleTitle Xenopus laevis occludin. Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. Eur. J. Biochem. 264 374–384 Occurrence Handle10.1046/j.1432-1327.1999.00616.x Occurrence Handle1:CAS:528:DyaK1MXlvFWku7c%3D Occurrence Handle10491082

    Article  CAS  PubMed  Google Scholar 

  8. K.D. Curtin Z. Zhang R.J. Wyman (1999) ArticleTitle Drosophila has several genes for gap junction proteins. Gene 232 191–201 Occurrence Handle1:CAS:528:DyaK1MXktlKjs7g%3D Occurrence Handle10352230

    CAS  PubMed  Google Scholar 

  9. P. D'Andrea V. Veronesi M. Bicego S. Melchionda L. Zelante E. Di Iorio R. Bruzzone P. Gasparini (2002) ArticleTitleHearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem. Biophys. Res. Commun. 296 685–691 Occurrence Handle10.1016/S0006-291X(02)00891-4 Occurrence Handle1:CAS:528:DC%2BD38XmtFSht7w%3D Occurrence Handle12176036

    Article  CAS  PubMed  Google Scholar 

  10. P. D'Atri S. Citi (2002) ArticleTitleMolecular complexity of vertebrate tight junctions. Mol. Membrane Biol. 19 103–112 Occurrence Handle10.1080/09687680210129236 Occurrence Handle1:CAS:528:DC%2BD38XlsVCltLY%3D

    Article  CAS  Google Scholar 

  11. M. Delmar (2002) ArticleTitleConnexin diversity: discriminating the message. Circ. Res. 91 85–86 Occurrence Handle10.1161/01.RES.0000028342.56448.9F Occurrence Handle1:CAS:528:DC%2BD38XlvVCgs7w%3D Occurrence Handle12142338

    Article  CAS  PubMed  Google Scholar 

  12. J. Eiberger J. Degen A. Romualdi U. Deutsch K. Willecke G. Sohl (2001) ArticleTitleConnexin genes in the mouse and human genome. Cell Adhes. Commun. 8 163–165 Occurrence Handle1:CAS:528:DC%2BD38XltVSqsLY%3D

    CAS  Google Scholar 

  13. M.L. Epstein N.B. Gilula (1977) ArticleTitleA study of communication specificity between cells in culture. J. Cell Biol. 75 769–787 Occurrence Handle1:STN:280:CSeD2cnhtFM%3D Occurrence Handle562887

    CAS  PubMed  Google Scholar 

  14. W.H. Evans P.E.M. Martin (2002a) ArticleTitleGap junctions: structure and function. Mol. Membrane Biol. 19 121–136 Occurrence Handle1:CAS:528:DC%2BD38XlsVCltb4%3D

    CAS  Google Scholar 

  15. W.H. Evans P.E. Martin (2002b) ArticleTitleLighting up gap junction channels in a flash. Bioessays 24 876–880 Occurrence Handle1:CAS:528:DC%2BD38Xot1ajsLs%3D

    CAS  Google Scholar 

  16. D.-F. Feng R.F. Doolittle (1990) ArticleTitleProgressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 183 375–387 Occurrence Handle1:CAS:528:DyaK3cXmt1Ontbg%3D Occurrence Handle2314283

    CAS  PubMed  Google Scholar 

  17. M.D. Ganfornina D. Sanchez M. Herrera M.J. Bastiani (1999) ArticleTitleDevelopmental expression and molecular characterization of two gap junction channel proteins during embryogenesis in the grasshopper Schistocerca americana. Dev. Genet. 24 137–150 Occurrence Handle10.1002/(SICI)1520-6408(1999)24:1/2<137::AID-DVG13>3.3.CO;2-Z Occurrence Handle1:CAS:528:DyaK1MXhvVSjuro%3D Occurrence Handle10079517

    Article  CAS  PubMed  Google Scholar 

  18. M.R. Ghassemifar B. Sheth T. Papenbrock H.J. Leese F.D. Houghton T.P. Fleming (2002) ArticleTitleOccludin TM4: an isoform of the tight junction protein present in primates lacking the fourth transmembrane domain. J. Cell Sci. 115 3171–3180 Occurrence Handle1:CAS:528:DC%2BD38XmsFaku7Y%3D Occurrence Handle12118072

    CAS  PubMed  Google Scholar 

  19. P. Ghosh S. Ghosh S. Das (2002) ArticleTitleSelf-regulation of rat liver GAP junction by phosphorylation. Biochim. Biophys. Acta 1564 500–504 Occurrence Handle10.1016/S0005-2736(02)00504-7 Occurrence Handle1:CAS:528:DC%2BD38XmtlCrsbo%3D Occurrence Handle12175934

    Article  CAS  PubMed  Google Scholar 

  20. G.M. Hand D.J. Muller B.J. Nicholson A. Engel G.E. Sosinsky (2002) ArticleTitleIsolation and characterization of gap junctions from tissue culture cells. J. Mol. Biol. 315 587–600 Occurrence Handle10.1006/jmbi.2001.5262 Occurrence Handle1:CAS:528:DC%2BD38XntlOjsQ%3D%3D Occurrence Handle11812132

    Article  CAS  PubMed  Google Scholar 

  21. A.L. Harris (2001) ArticleTitleEmerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34 325–472 Occurrence Handle1:CAS:528:DC%2BD38**tVCnt70%3D Occurrence Handle11838236

    CAS  PubMed  Google Scholar 

  22. M. Heiskala P.A. Peterson Y. Yang (2001) ArticleTitleThe roles of claudin superfamily proteins in paracellular transport. Traffic 2 93–98 Occurrence Handle10.1034/j.1600-0854.2001.020203.x Occurrence Handle1:STN:280:DC%2BD3MvotlCgtw%3D%3D Occurrence Handle11247307

    Article  CAS  PubMed  Google Scholar 

  23. S.S. Jahromi K. Wentlandt S. Piran P.L. Carlen (2002) ArticleTitleAnticonvulsant actions of gap junctional blockers in an in vitro seizure model. J. Neurophysiol. 88 1893–1902 Occurrence Handle1:CAS:528:DC%2BD38XoslSlu7o%3D Occurrence Handle12364515

    CAS  PubMed  Google Scholar 

  24. D.Y. Kim Y. Kam S.K. Koo C.O. Joe (1999) ArticleTitleGating connexin 43 channels reconstituted in lipid vesicles by mitogen activated protein kinase phosphorylation. J. Biol. Chem. 274 5581 Occurrence Handle10.1074/jbc.274.9.5581 Occurrence Handle1:CAS:528:DyaK1MXhsFaqs7o%3D Occurrence Handle10026174

    Article  CAS  PubMed  Google Scholar 

  25. K. Kitamura K. Takahashi Y. Tamagawa Y. Noguchi Y. Kuroishikawa K. Ishikawa H. Hagiwara (2000) ArticleTitleDeafness genes. J. Med. Dent. Sci. 47 1–11 Occurrence Handle1:STN:280:DC%2BD38vgvVaqtg%3D%3D Occurrence Handle12162522

    CAS  PubMed  Google Scholar 

  26. Y. Kiuchi-Saishin S. Gotoh M. Furuse A. Takasuga Y. Tano S. Tsukita (2002) ArticleTitleDifferential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 13 875–886 Occurrence Handle1:CAS:528:DC%2BD38XjtFSnsb0%3D Occurrence Handle11912246

    CAS  PubMed  Google Scholar 

  27. R. Kollmar S.K. Nakamura J.A. Kappler A.J. Hudspeth (2001) ArticleTitleExpression and phylogeny of claudins in vertebrate primordia. Proc. Natl. Acad. Sci. USA 98 10196–10201 Occurrence Handle10.1073/pnas.171325898 Occurrence Handle1:CAS:528:DC%2BD3MXmvFWitLk%3D Occurrence Handle11517306

    Article  CAS  PubMed  Google Scholar 

  28. N.M. Kumar N.B. Gilula (1996) ArticleTitleThe gap junction communication channel. Cell 84 381–388 Occurrence Handle1:CAS:528:DyaK28XhtFWqtr0%3D Occurrence Handle8608591

    CAS  PubMed  Google Scholar 

  29. J. Kyte R.F. Doolittle (1982) ArticleTitleA simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 105–132 Occurrence Handle1:CAS:528:DyaL38Xks1yjtro%3D Occurrence Handle7108955

    CAS  PubMed  Google Scholar 

  30. Y. Landesman T.W. White T.A. Starich I.E. Shaw D.A. Goodenough D.L. Paul (1999) ArticleTitleInnexin-3 forms connexin-like intercellular channels. J. Cell Sci. 112 2391–2396 Occurrence Handle1:CAS:528:DyaK1MXltFWqs7o%3D Occurrence Handle10381394

    CAS  PubMed  Google Scholar 

  31. L. Langbein C. Grund C. Kuhn S. Praetzel J. Kartenbeck J.M. Brandner I. Moll W.W. Franke (2002) ArticleTitleTight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur. J. Cell Biol. 81 419–435 Occurrence Handle1:CAS:528:DC%2BD38XotFGqu7o%3D Occurrence Handle12234014

    CAS  PubMed  Google Scholar 

  32. T. Le T.T. Tseng M.H. Saier Jr. (1999) ArticleTitleFlexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: Application to integral membrane transport proteins. Mol. Membr. Biol. 16 173–179 Occurrence Handle10.1080/096876899294634 Occurrence Handle1:CAS:528:DyaK1MXksVSru78%3D Occurrence Handle10417982

    Article  CAS  PubMed  Google Scholar 

  33. W.R. Loewenstein (1987) ArticleTitleThe cell-to-cell channel of gap junctions. Cell 48 725–726 Occurrence Handle1:CAS:528:DyaL1cXht1yqurw%3D Occurrence Handle3815521

    CAS  PubMed  Google Scholar 

  34. H. Long C.D. Crean W.H. Lee O.W. Cummings T.G. Gabig (2001) ArticleTitleExpression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res. 61 7878–7881 Occurrence Handle1:CAS:528:DC%2BD3MXotlaku7Y%3D Occurrence Handle11691807

    CAS  PubMed  Google Scholar 

  35. P. Lopez D. Balicki L.K. Buehler M.M. Falk S.C. Chen (2001) ArticleTitleDistribution and dynamics of gap junction channels revealed in living cells. Cell Adhes. Commun. 8 237–242 Occurrence Handle1:CAS:528:DC%2BD38XltVSqtr8%3D

    CAS  Google Scholar 

  36. D. Mackay A. Ionides Z. Kibar G. Rouleau V. Berry A. Moore A. Shiels S. Bhattacharya (1999) ArticleTitleConnexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet. 64 1357–1364 Occurrence Handle10.1086/302383 Occurrence Handle1:CAS:528:DyaK1MXlt1ajtrc%3D Occurrence Handle10205266

    Article  CAS  PubMed  Google Scholar 

  37. B.A. McClane (2000) ArticleTitle Clostridium perfringens enterotoxin and intestinal tight junctions. Trends Microbiol. 8 145–146 Occurrence Handle10.1016/S0966-842X(00)01724-8 Occurrence Handle1:STN:280:DC%2BD3c3hvFKnsg%3D%3D Occurrence Handle10754565

    Article  CAS  PubMed  Google Scholar 

  38. L.C. Milks N.M. Kumar R. Houghten N. Unwin N.B. Gilula (1988) ArticleTitleTopology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 7 2967–2975 Occurrence Handle1:CAS:528:DyaL1MXntFaqtQ%3D%3D Occurrence Handle2460334

    CAS  PubMed  Google Scholar 

  39. Y. Morcos M.J. Hosie H.C. Bauer T. Chan-Ling (2001) ArticleTitleImmunolocalization of occludin and claudin-1 to tight junctions in intact CNS vessels of mammalian retina. J. Neurocytol. 30 107–123 Occurrence Handle10.1023/A:1011982906125 Occurrence Handle1:CAS:528:DC%2BD38**tFCjsg%3D%3D Occurrence Handle11577249

    Article  CAS  PubMed  Google Scholar 

  40. D.H. Nies S. Koch S. Wachi N. Peitzsch M.H. Saier Jr. (1998) ArticleTitleCHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J. Bacteriol. 180 5799–5802 Occurrence Handle1:CAS:528:DyaK1cXnt1amsb8%3D Occurrence Handle9791139

    CAS  PubMed  Google Scholar 

  41. Y. Omori M. Mesnil H. Yamasaki (1996) ArticleTitleConnexin 32 mutations from X-linked Charcot-Marie tooth disease patients: functional defects and dominant negative effects. Mol. Biol. Cell 7 907–916 Occurrence Handle1:CAS:528:DyaK28Xjs1Kiurk%3D Occurrence Handle8816997

    CAS  PubMed  Google Scholar 

  42. Y. Panchin I. Kelmanson M. Matz K. Lukyanov N. Usman S. Lukyanov (2000) ArticleTitleA ubiquitous family of putative gap junction molecules. Curr. Biol. 10 R473–R474 Occurrence Handle10.1016/S0960-9822(00)00576-5 Occurrence Handle1:STN:280:DC%2BD3cvntVarsg%3D%3D Occurrence Handle10898987

    Article  CAS  PubMed  Google Scholar 

  43. S.S. Pao I.T. Paulsen M.H. Saier Jr. (1998) ArticleTitleThe major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62 1–32 Occurrence Handle1:CAS:528:DyaK1c**tF2jsLg%3D Occurrence Handle9529885

    CAS  PubMed  Google Scholar 

  44. P. Phelan T.A. Stanch (2001) ArticleTitleInnexins get into the gap. Bioessays 23 388–396 Occurrence Handle1:CAS:528:DC%2BD3MXptVOjtro%3D Occurrence Handle11340620

    CAS  PubMed  Google Scholar 

  45. N. Potenza R. del Gaudio L. Rivieccio G.M. Russo G. Geraci (2002) ArticleTitleCloning and molecular characterization of the first innexin of the phylum annelida—expression of the gene during development. J. Mol. Evol. 54 312–321 Occurrence Handle1:CAS:528:DC%2BD38XhtlGmu7o%3D Occurrence Handle11847557

    CAS  PubMed  Google Scholar 

  46. G. Richard L.E. Smith R.A. Bailey P. Itin D. Hohl E.H. Epstein Jr. J.J. DiGiovanna J.G. Compton S.J. Bale (1998) ArticleTitleMutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nature Genet. 20 366–369 Occurrence Handle10.1038/3840 Occurrence Handle1:CAS:528:DyaK1cXnslOntr0%3D Occurrence Handle9843209

    Article  CAS  PubMed  Google Scholar 

  47. M.H. Saier Jr. (2000) ArticleTitleVectorial metabolism and the evolution of transport systems. J. Bacteriol. 182 5029–5035 Occurrence Handle10.1128/JB.182.18.5029-5035.2000 Occurrence Handle1:STN:280:DC%2BD3cvlvVCruw%3D%3D Occurrence Handle10960084

    Article  CAS  PubMed  Google Scholar 

  48. M.H. Saier Jr. (2001) Evolution of transport proteins. J.K. Setlow (Eds) Genetic Engineering. Principles and Methods, Vol. 23. Kluwer Academic/Plenum Publishers New York 1–9

    Google Scholar 

  49. T. Sakaguchi H. Kohler X. Gu B.A. McCormick H.C. Reinecker (2002) ArticleTitle Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol. 4 367–381 Occurrence Handle10.1046/j.1462-5822.2002.00197.x Occurrence Handle1:CAS:528:DC%2BD38Xlt1Skt7w%3D Occurrence Handle12067320

    Article  CAS  PubMed  Google Scholar 

  50. Y. Shibata M. Kumai K. Nishii K. Nakamura (2001) ArticleTitleDiversity and molecular anatomy of gap junctions. Med. Electron Microsc. 34 153–159 Occurrence Handle10.1007/s007950100008 Occurrence Handle1:CAS:528:DC%2BD38XhtFShtb8%3D Occurrence Handle11793189

    Article  CAS  PubMed  Google Scholar 

  51. A. Sotkis X.G. Wang T. Yasumura L.L. Peracchia A. Persechini J.E. Rash C. Peracchia (2001) ArticleTitleCalmodulin colocalizes with connexins and plays a direct role in gap junction channel gating. Cell Adhes. Commun. 8 277–281 Occurrence Handle1:CAS:528:DC%2BD38XltVSqtrY%3D

    CAS  Google Scholar 

  52. T. Starich M. Sheehan J. Jadrich J. Shaw (2001) ArticleTitleInnexins in C. elegans. Cell Adhes. Commun. 8 311–314 Occurrence Handle1:CAS:528:DC%2BD38XltVSqt7s%3D

    CAS  Google Scholar 

  53. L.A. Stebbings M.G. Todman P. Phelan J.P. Bacon J.A. Davies (2000) ArticleTitleTwo Drosophila innexins are expressed in overlap** domains and cooperate to form gap-junction channels. Mol. Biol. Cell 11 2459–2470 Occurrence Handle1:CAS:528:DC%2BD3cXkvFCiurk%3D Occurrence Handle10888681

    CAS  PubMed  Google Scholar 

  54. L.A. Stebbings M.G. Todman R. Phillips C.E. Greer J. Tam P. Phelan K. Jacobs J.P. Bacon J.A. Davies (2002) ArticleTitleGap junctions in Drosophila: developmental expression of the entire innexin gene family. Mech. Dev. 113 197–205 Occurrence Handle10.1016/S0925-4773(02)00025-4 Occurrence Handle1:CAS:528:DC%2BD38**vVSmt7Y%3D Occurrence Handle11960713

    Article  CAS  PubMed  Google Scholar 

  55. U. Tepass G. Tanentzapf R. Ward R. Fehon (2001) ArticleTitleEpithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35 747–784 Occurrence Handle10.1146/annurev.genet.35.102401.091415 Occurrence Handle1:CAS:528:DC%2BD38XlsVOq Occurrence Handle11700298

    Article  CAS  PubMed  Google Scholar 

  56. J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) ArticleTitleThe CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25 4876–4882 Occurrence Handle10.1093/nar/25.24.4876 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    Article  CAS  PubMed  Google Scholar 

  57. T.-T. Tseng K.S. Gratwick J. Kollman D. Park D.H. Nies A. Goffeau M.H. Saier Jr. (1999) ArticleTitleThe RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1 107–125 Occurrence Handle1:CAS:528:DyaK1MXls12qsr0%3D Occurrence Handle10941792

    CAS  PubMed  Google Scholar 

  58. S. Tsukita M. Furuse (2000) ArticleTitleThe structure and function of claudins, cell adhesion molecules at tight junctions. Ann. N.Y. Acad. Sci. 915 129–135 Occurrence Handle1:CAS:528:DC%2BD3MXntVCgtw%3D%3D Occurrence Handle11193568

    CAS  PubMed  Google Scholar 

  59. S. Tsukita M. Furuse (2002) ArticleTitleClaudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell. Biol. 14 531 Occurrence Handle10.1016/S0955-0674(02)00362-9 Occurrence Handle1:CAS:528:DC%2BD38XmvVCrtLs%3D Occurrence Handle12231346

    Article  CAS  PubMed  Google Scholar 

  60. V.M. Unger N.M. Kumar N.B. Gilula M. Yeager (1999) ArticleTitleThree-dimensional structure of a recombinant gap junction membrane channel. Sci. Mag. 283 1176–1180 Occurrence Handle10.1126/science.283.5405.1176 Occurrence Handle1:CAS:528:DyaK1MXhsFehurk%3D

    Article  CAS  Google Scholar 

  61. T.W. White D.L. Paul (1999) ArticleTitleGenetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61 283–310 Occurrence Handle10.1146/annurev.physiol.61.1.283 Occurrence Handle1:CAS:528:DyaK1M**tVejs7s%3D Occurrence Handle10099690

    Article  CAS  PubMed  Google Scholar 

  62. K. Wiliecke J. Eiberger J. Degen D. Eckardt A. Romualdi M. Guldenagel U. Deutsch G. Sohl (2002) ArticleTitleStructural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383 725–737 Occurrence Handle1:CAS:528:DC%2BD38XlvFelsrY%3D Occurrence Handle12108537

    CAS  PubMed  Google Scholar 

  63. M. Yeager V.M. Unger M.M. Falk (1998) ArticleTitleSynthesis, assembly and structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 8 517–524 Occurrence Handle10.1016/S0959-440X(98)80131-0 Occurrence Handle1:CAS:528:DyaK1cXlslKhu7k%3D Occurrence Handle9729745

    Article  CAS  PubMed  Google Scholar 

  64. Y. Zhai M.H. Saier Jr. (2001) ArticleTitleThe AveHAS program for the determination of average hydrophobicity, amphipathicity, and similarity. J. Mol. Microbiol. Biotechnol. 3 285–286 Occurrence Handle1:CAS:528:DC%2BD3M**sFSrt7Y%3D Occurrence Handle11321584

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mary Beth Miller for assistance in the preparation of this manuscript. This work was supported by NIH grants GM55434 and GM64368 from the National Institute of General Medical Sciences (to MHS), an NEI grant EY13605 (to NMK), an RPB grant of unrestricted funds from Research to Prevent Blindness (to the UIC), and a grant from the Danish Research Council (to PAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Saier Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, V., Chang, A., Tchieu, J. et al. Sequence and Phylogenetic Analyses of 4 TMS Junctional Proteins of Animals: Connexins, Innexins, Claudins and Occludins . J. Membrane Biol. 194, 59–76 (2003). https://doi.org/10.1007/s00232-003-2026-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-003-2026-8

Keywords

Navigation