Log in

A reliable model to estimate the effective thermal conductivity of nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The thermal conductivity is a key parameter to study the applicability of nanofluids for heat transfer enhancement of flowing liquids. This paper is an effort on implementing various methods to model the effective thermal conductivity of 26 nanofluids under different situations and evaluate the authenticity of the reported experimental data in the open literature. The most influential physical properties of nanofluids, such as the nanoparticle volume fraction, nanoparticle diameter, thermal conductivity of base fluid, temperature, and thermal conductivity of solid particle are considered as the input variables. With the purpose of introducing a comprehensive and pragmatic model with desired accuracy, a Multilayer Perceptron-Artificial Neural Network (MLP-ANN) approach is constructed and tested using data generated from 993 experiments. To appraise the creditability of the MLP-ANN model, a comparison with other 10 alternative techniques is carried out. The predictions made by the MLP-ANN yield excellent match with the experimentally generated samples against those of the other approaches. The coefficient of determination and relative root mean squared error are found to be 0.994 and 1.534%, respectively. Likewise, the results of the data analysis and the outlier detection method have proved that some of the data samples are significantly inconsistent with the remainder of the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446

    Article  Google Scholar 

  2. Chen T, Kim J, Cho H (2014) Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid. Int J Refrig 48:233–244

    Article  Google Scholar 

  3. Buschmann MH, Franzke U (2014) Improvement of thermosyphon performance by employing nanofluid. Int J Refrig 40:416–428

    Article  Google Scholar 

  4. Sozen A, Ozbas E, Menlik T, Cakır MT, Guru M, Boran K (2014) Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: an experimental study. Int J Refrig 44:73–80

    Article  Google Scholar 

  5. Khan JA, Mustafa M, Hayat T, Farooq M, Alsaedi A, Liao SJ (2014) On model for three-dimensional flow of nanofluid: an application to solar energy. J Mol Liq 194:41–47

    Article  Google Scholar 

  6. Azmi WH, Sharma KV, Mamat R, Najafi G, Mohamad MS (2016) The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids-a review. Renew Sust Energ Rev 53:1046–1058

    Article  Google Scholar 

  7. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Article  Google Scholar 

  8. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203

    Article  Google Scholar 

  9. Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow 29:1456–1461

    Article  Google Scholar 

  10. Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf 129:298–307

    Article  Google Scholar 

  11. Patel HE, Sundararajan T, Das SK (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12:1015–1031

    Article  Google Scholar 

  12. Gu Y, Xu S, Wu X (2018) Thermal conductivity enhancements and viscosity properties of water based nanofluid containing carbon nanotubes decorated with ag nanoparticles. Heat Mass Transf 54:1847–1852

    Article  Google Scholar 

  13. Ebrahimi S, Saghravani SF (2018) Experimental study of the thermal conductivity features of the water based Fe3O4/CuO nanofluid. Heat Mass Transf 54:999–1008

    Article  Google Scholar 

  14. Godson L, Raja B, Lal DM, Wongwises S (2010) Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer 23:317–332

    Article  Google Scholar 

  15. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191

    Article  Google Scholar 

  16. Wasp EJ, Kenny JP, Gandhi RL (1977) Solid-liquid flow slurry pipeline transportation. In: Series on bulk materials handling, vol 1. Trans Tech Publications, Clausthal, p 224

  17. Xue QZ (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter 368:302–307

    Article  Google Scholar 

  18. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314

    Article  Google Scholar 

  19. Mintsa HA, Roy G, Cong TN, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48:363–371

    Article  Google Scholar 

  20. Yang L, Xu J, Du K, Zhang X (2017) Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol 317:348–369

    Article  Google Scholar 

  21. Nabipour M, Keshavarz P (2017) Modeling surface tension of pure refrigerants using feed-forward back-propagation neural networks. Int J Refrig 75:217–227

    Article  Google Scholar 

  22. Deng S, Su W, Zhao L (2016) A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index. Int J Refrig 63:63–71

    Article  Google Scholar 

  23. Zendehboudi A, Wang B, Li X (2017) Robust model to predict the migration ratios of nanoparticles during the pool-boiling process of nanorefrigerants. International Communications in Heat and Mass Transfer 84:75–85

    Article  Google Scholar 

  24. Zendehboudi A (2016) Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels. Energy Convers Manag 127:245–255

    Article  Google Scholar 

  25. Zendehboudi A, Tatar A (2017) Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles. J Mol Liq 247:304–312

    Article  Google Scholar 

  26. Zendehboudi A, Wang B, Li X (2017) Application of smart models for prediction of the frost layer thickness on vertical cryogenic surfaces under natural convection. Appl Therm Eng 115:1128–1136

    Article  Google Scholar 

  27. Zendehboudi A, Tatar A (2017) Oil flooded scroll compressors: predicting the energy performance and evaluating the experimental data. Measurement 112:38–46

    Article  Google Scholar 

  28. Zendehboudi A, Li X (2017) Robust predictive models for estimating frost deposition on horizontal and parallel surfaces. Int J Refrig 80:225–237

    Article  Google Scholar 

  29. Zendehboudi A, Li X, Wang B (2017) Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection. Int J Refrig 74:473–485

    Article  Google Scholar 

  30. Mehrabi M, Sharifpur M, Meyer JP (2012) Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina–water nanofluids. International Communications in Heat and Mass Transfer 39:971–977

    Article  Google Scholar 

  31. Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S (2015) Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. International Communications in Heat and Mass Transfer 68:50–57

    Article  Google Scholar 

  32. Esfe MH, Afrand M, Yan W-M, Akbari M (2015) Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data. International Communications in Heat and Mass Transfer 66:246–249

    Article  Google Scholar 

  33. Afrand M, Toghraie D, Sina N (2016) Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. International Communications in Heat and Mass Transfer 75:262–269

    Article  Google Scholar 

  34. Yousefi F, Mohammadiyan S, Karimi H (2016) Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids. Heat Mass Transf 52:2141–2154

    Article  Google Scholar 

  35. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118:287–294

    Article  Google Scholar 

  36. khosrojerdi S, Vakili M, Yahyaei M, Kalhor K (2016) Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. International Communications in Heat and Mass Transfer 74:11–17

    Article  Google Scholar 

  37. Esfahani JA, Safaei MR, Goharimanesh M, Oliveira LRD, Goodarzi M, Shamshirband S, Filho EPB (2017) Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol 317:458–470

    Article  Google Scholar 

  38. Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30

    Article  Google Scholar 

  39. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107

    Article  Google Scholar 

  40. Timofeevaa EV, Moravekb MR, Singh D (2011) Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J Colloid Interface Sci 364:71–79

    Article  Google Scholar 

  41. Pastoriza-Gallego MJ, Lugo L, Cabaleiro D, Legido JL, Piñeiro MM (2014) Thermophysical profile of ethylene glycol-based ZnO nanofluids. J Chem Thermodyn 73:23–30

    Article  Google Scholar 

  42. Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. International Communications in Heat and Mass Transfer 39:665–669

    Article  Google Scholar 

  43. Murshed SMS (2012) Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering 33:722–731

    Article  Google Scholar 

  44. Mondragón R, Segarra C, Martínez-Cuenca R, Juliá JE, Jarque JC (2013) Experimental characterization and modeling of thermophysical properties of nanofluids at high temperature conditions for heat transfer applications. Powder Technol 249:516–529

    Article  Google Scholar 

  45. Halelfadl S, Maré T, Estellé P (2014) Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Thermal Fluid Sci 53:104–110

    Article  Google Scholar 

  46. Lee S, Choi US, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  47. Fedele L, Colla L, Bobbo S (2012) Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig 35:1359–1366

    Article  Google Scholar 

  48. Thang BH, Khoi PH, Minh PN (2015) A modified model for thermal conductivity of car- bon nanotube-nanofluids. Phys Fluids 27:032002

    Article  Google Scholar 

  49. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  50. Moghadassi AR, MasoudHosseini S, Henneke DE (2010) Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Ind Eng Chem Res 49:1900–1904

    Article  Google Scholar 

  51. Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  Google Scholar 

  52. Godson L, Lal DM, Wongwises S (2010) Measurement of thermo physical properties of metallic nanofluids for high temperature applications. Nanoscale and Microscale Thermophysical Engineering 14:152–173

    Article  Google Scholar 

  53. Esfe MH, Karimipour A, Yan WM, Akbari M, Safaei MR, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf 88:728–734

    Article  Google Scholar 

  54. Esfe MH, Saedodin S, Asadi A, Karimipour A (2015) Thermal conductivity and viscosity of Mg(OH)2–ethylene glycol nanofluids: finding a critical temperature. J Therm Anal Calorim 120:1145–1149

    Article  Google Scholar 

  55. Wang W, Lin L, Feng Z, Wang S (2012) A comprehensive model for the enhanced thermal conductivity of nanofluids. Journal of Advanced Research in Physics 3:021209

    Google Scholar 

  56. Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:213–2218

    Article  Google Scholar 

  57. Kazemi-Beydokhti A, Heris SZ, Moghadam N, Shariati-Niasar M, Hamidi AA (2014) Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chem Eng Commun 201:593–611

    Article  Google Scholar 

  58. Yousefi F, Karimi H, Mohammadiyan S (2016) Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis. Heat Mass Transf 52:2345–2355

    Article  Google Scholar 

  59. Du K-L, Swamy MNS (2006) Neural networks in a soft computing framework. Springer, London

    Google Scholar 

  60. Aghaei A, Khorasanizadeh H, Sheikhzadeh GA (2018) Measurement of the dynamic viscosity of hybrid engine oil-Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transf 54:151–161

    Article  Google Scholar 

  61. Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9:143–151

    Article  Google Scholar 

  62. Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time. Neurocomputing 10:215–236

    Article  Google Scholar 

  63. Mitchell TM (1997) Machine learning. McGraw Hill, New York

    MATH  Google Scholar 

  64. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  Google Scholar 

  65. Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection. Wiley, New York

    MATH  Google Scholar 

  66. Mohammadi AH, Eslamimanesh A, Gharagheizi F, Richon D (2012) A novel method for evaluation of asphaltene precipitation titration data. Chem Eng Sci 78:181–185

    Article  Google Scholar 

  67. Eslamimanesh A, Gharagheizi F, Mohammadi AH, Richon D (2013) Assessment test of sulfur content of gases. Fuel Process Technol 110:133–140

    Article  Google Scholar 

  68. Li M-F, Tang X-P, Wu W, Liu H-B (2013) General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers Manag 70:139–148

    Article  Google Scholar 

  69. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics SMC-1:364–378

    Article  MathSciNet  Google Scholar 

  70. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23:665–685

    Article  Google Scholar 

  71. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  Google Scholar 

  72. Vatani A, Woodfield PL, Dao DV (2015) A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids. J Mol Liq 211:712–733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zendehboudi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Figure 9 shows the architecture of the MLP-ANN developed in this study, including the input layer, hidden layers, and output layer. To make the outcomes of the model reproducible, the matrices of the weights and biases of all layers of the optimized trained model are presented.

Fig. 9
figure 9

The optimized MLP-ANN architecture

$$ {\displaystyle \begin{array}{l}{iw}_{\left\{1,1\right\}}=\left(\begin{array}{lllll}0.39082& -0.014084& -10.6324& 0.26459& 0.84956\\ {}-3.0686& 1.7539& -0.3762& 4.4476& -0.40305\\ {}-6.2119& -0.59865& 8.0815& 3.1959& 2.8045\\ {}4.604& 0.032355& -0.41081& 4.0842& -4.3598\\ {}-1.8269& -0.21067& 14.0708& -5.1867& -5.2764\\ {}3.9682& 0.028767& -2.3525& 0.49441& 3.9595\\ {}-14.7481& 0.022126& -0.30675& 17.16& 1.8299\\ {}4.1637& 0.13297& 2.2652& 1.5591& 6.3607\\ {}6.5973& 0.17642& -7.7412& 0.87903& -2.8476\\ {}-5.5843& 0.038979& -4.2519& 4.1328& 1.7722\\ {}16.4519& 0.13228& 0.21144& 8.4349& -3.0043\\ {}-1.9754& 0.19147& -4.5379& -15.0046& 2.8383\end{array}\right)\\ {}{iw}_{\left\{2,1\right\}}=\left(\begin{array}{llllllllllll}9.3909& 5.2654& -5.0754& 2.0546& 4.9026& 0.10895& 5.8691& -2.3513& 2.7339& 1.873& -4.6554& -1.9204\\ {}-2.3822& 3.1975& -2.894& -2.1243& -6.7652& 1.6242& 3.8816& 0.41683& -2.9673& 2.6467& 4.6923& -3.4879\\ {}0.31545& 1.1402& 0.21657& 1.2344& 4.6941& -0.43117& 1.9072& 0.25659& 1.9737& -5.0242& -6.0346& 1.0776\\ {}2.6388& 6.633& 0.57383& -0.40435& 4.3536& 2.5118& 9.6553& -1.3428& 2.8852& -8.4108& -2.802& -3.8271\\ {}7.7157& 6.3849& -4.1712& 1.3367& 0.13122& 2.649& -2.7644& -3.5906& 3.5364& 6.7589& -2.332& -1.7197\\ {}-12.1882& 0.66339& 6.865& -0.065198& -6.2056& 1.1504& -7.9341& -1.0004& 1.2303& 0.51055& 5.7287& 4.174\\ {}13.211& 1.4139& -2.1939& 1.2398& 2.3873& -2.4558& 7.2297& 2.8206& 7.6622& -6.4518& -8.8091& -0.35605\\ {}4.0242& -3.912& 0.17356& 1.8337& 5.7274& 9.1018& 6.9179& -5.3676& 1.3547& 1.2528& -1.7182& 11.8254\\ {}8.6342& -1.9964& -8.5127& -2.57& -7.4611& 1.3305& 2.968& -1.098& -2.9124& 3.2901& -2.7158& 5.1096\\ {}1.8004& -5.711& 1.3356& -0.64724& -7.3865& -2.7065& -0.049451& 2.2235& 0.28367& -5.7362& -1.3295& -2.2794\\ {}1.3055& -8.0506& -1.4746& -4.0037& 2.207& -7.8095& -2.418& 5.267& -2.6655& -1.4461& 3.6883& -8.5931\\ {}-0.76732& 3.3217& -1.6655& -3.2034& 3.8284& -0.80539& -3.6202& 0.11302& 0.34143& 2.269& 2.6533& -4.565\end{array}\right)\\ {}{iw}_{\left\{3,2\right\}}=\left(-7.2558\kern0.5em 8.2687\kern0.5em 9.1859\kern0.5em 4.6823\kern0.5em 7.1299\kern0.5em 11.3354\kern0.5em 4.6121\kern0.5em -16.6478\kern0.5em 8.8137\kern0.5em -10.5927\kern0.5em 5.4952\kern0.5em -10.5162\right)\\ {}{b}_{\left\{1\right\}}=\left(\begin{array}{l}-9.5135\\ {}-6.1122\\ {}1.8874\\ {}2.3953\\ {}4.2362\\ {}-0.21758\\ {}-5.9346\\ {}4.5738\\ {}-5.7288\\ {}-3.0885\\ {}10.7221\\ {}-8.9511\end{array}\right)\\ {}{b}_{\left\{2\right\}}=\left(\begin{array}{l}-10.2081\\ {}0.086536\\ {}4.5056\\ {}-0.51204\\ {}-8.6412\\ {}1.7373\\ {}0.11254\\ {}-5.564\\ {}3.3595\\ {}7.221\\ {}7.3636\\ {}1.8576\end{array}\right)\\ {}{b}_{\left\{3\right\}}=\left(-3.4709\right)\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendehboudi, A., Saidur, R. A reliable model to estimate the effective thermal conductivity of nanofluids. Heat Mass Transfer 55, 397–411 (2019). https://doi.org/10.1007/s00231-018-2420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2420-5

Keywords

Navigation