Log in

Experimental analysis of refrigerants flow boiling inside small sized microfin tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The refrigerant charge reduction is one of the most challenging issues that the scientific community has to cope to reduce the anthropic global warming. Recently, mini microfin tubes have been matter of research, since they can reach better thermal performance in small domains, leading to a further refrigerant charge reduction. This paper presents experimental results about R134a flow boiling inside a microfin tube having an internal diameter at the fin tip of 2.4 mm. The mass flux was varied between 375 and 940 kg m−2 s−1, heat flux from 10 to 50 kW m−2, vapor quality from 0.10 to 0.99. The saturation temperature at the inlet of the test section was kept constant and equal to 30 °C. R134a thermal and fluid dynamic performances are presented and compared against those obtained with R1234ze(E) and R1234yf and against values obtained during R134a flow boiling inside a 3.4 mm ID microfin tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

c :

Specific Heat [J kg K−1]

D i :

Inner Diameter at the Fin Tip [m]

(−dp/dz):

Pressure Gradient [Pa m−1]

G :

Mass Velocity [kg m−2 s−1]

h :

Specific Enthalpy [J kg−1], Fin Height [m]

HF :

Heat Flux [W m−2]

HTC :

Heat Transfer Coefficient [W m−2 K−1]

I :

Current [A]

i :

Uncertainty

L :

Sample Length [m]

\( \dot{m} \) :

Mass Flow Rate [kg s−1]

n :

Fin Number [−]

p :

Pressure [bar]

P :

Power [W]

q :

Heat Flow Rate [W]

t :

Temperature [°C]

x :

Vapor Quality [−]

y :

Physical Quantity

z :

Coordinate Along the Flow Direction [m]

β :

Helix Angle [°]

Δp :

Pressure Drop [Pa]

ΔT :

Temperature Difference [K]

ΔV :

Electric Potential Difference [V]

γ :

Apex Angle [°]

a:

Momentum Term

EL:

Electric

f:

Frictional

in:

Inlet

L:

Saturated Liquid

loss:

Losses

out:

Outlet

p:

At constant pressure

pc:

Precondenser

ref.:

Refrigerant

sat:

Saturation

tot:

Total

TS:

Test Section

V:

Saturated Vapor

vs:

Superheated Vapor

w:

Water

References

  1. Fujie K, Itoh N, Kimura H, Nakayama N, Yanugi T (1977) Heat transfer pipe, US patent 4044797, assigned to Hitachi

  2. Schlager LM, Pate MB, Bergles AE (1990) Evaporation and condensation heat transfer and pressure drop in horizontal 12.7 mm microfin tubes with refrigerant R22. J Heat Transf 112:1041–1047

    Article  Google Scholar 

  3. Kuo CS, Wang CC (1996) In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube. Int J Heat Mass Transf 39:2556–2569

    Article  Google Scholar 

  4. Miyara A, Otsubo Y (2002) Condensation heat transfer of herringbone micro fin tubes. Int J Therm Sci 41:639–645

    Article  Google Scholar 

  5. Jung D, Cho Y, Park K (2004) Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and micro-fin tubes. Int J Refrig 27:25–32

    Article  Google Scholar 

  6. Kim MH, Shin JS (2005) Evaporating heat transfer of R22 and R410A in horizontal smooth and micro-fin tubes. Int J Refrig 28:940–948

    Article  Google Scholar 

  7. Cavallini A, Del Col D, Mancin S, Rossetto L (2009) Condensation of pure and near azeotropic refrigerants in microfin tubes: a new computational procedure. Int J Refrig 32:162–174

    Article  Google Scholar 

  8. Gao L, Honda T, Koyama S (2007) Experiments on flow boiling heat transfer of almost pure CO2 and CO2-oil mixtures in horizontal smooth and microfin tubes. HVAC&R 13:415–425

    Article  Google Scholar 

  9. Kim YJ, Cho JM, Kim MS (2008) Experimental study on the evaporative heat transfer and pressure drop of CO2 flowing upward in vertical and smooth micro-fin tubes with the diameter of 5 mm. Int J Refrig 31:771–779

    Article  Google Scholar 

  10. Dang C, Haraguchi N, Hihara E (2010) Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube. Int J Refrig 33:655–663

    Article  Google Scholar 

  11. Huang D, Ding G, Hu H, Zhu Y, Gao Y, Deng B (2010) Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes. Exp Thermal Fluid Sci 34:845–856

    Article  Google Scholar 

  12. Kondou C, Baba D, Mishima F, Koyama S (2013) Flow boiling of non-azeotropic mixture R32/R1234ze(E) in horizontal microfin tubes. Int J Refrig 36:2366–2378

    Article  Google Scholar 

  13. Kondou C, Mishima F, Koyama S (2015) Condensation and evaporation of R32/R1234ze(E) and R744/R32/R1234ze(E) flow in horizontal microfin tubes. Sci Tech Built Env 21:564–577

    Article  Google Scholar 

  14. Mancin S, Diani A, Rossetto L (2015) Experimental measurements of R134a flow boiling inside a 3.4 mm ID microfin tube. Heat Transf Eng 36:1218–1229

    Article  Google Scholar 

  15. Diani A, Mancin S, Rossetto L (2014) R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube. Int J Refrig 47:105–119

    Article  Google Scholar 

  16. Diani A, Mancin S, Rossetto L (2015) Flow boiling heat transfer of R1234yf inside a 3.4 mm ID microfin tube. Exp Thermal Fluid Sci 66:127–136

  17. Diani A, Mancin S, Cavallini A, Rossetto L (2016) Experimental investigation of R1234ze(E) flow boiling inside a 2.4 mm ID horizontal microfin tube. Int J Refrig 69:272–284

    Article  Google Scholar 

  18. Diani A, Cavallini A, Rossetto L (2017) R1234yf flow boiling inside a 2.4 mm microfin tube. Heat Transf Eng 38:303–312

    Article  Google Scholar 

  19. Wu Z, Wu Y, Sunden B, Li W (2013) Convective vaporization in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 44:398–408

    Article  Google Scholar 

  20. Ding G, Hu H, Huang X, Deng B, Gao Y (2009) Experimental investigation of two-phase frictional pressure drop of R410A-oil mixture flow boiling in a 5 mm microfin tube. Int J Refrig 32:150–161

    Article  Google Scholar 

  21. Cho JM, Kim YJ, Kim MS (2010) Experimental studies on the evaporative heat transfer and pressure drop of CO2 and CO2/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45°. Int J Refrig 33:922–931

    Article  Google Scholar 

  22. Huang X, Ding G, Hu H, Zhu Y, Gao Y, Deng B (2010) Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes. Int J Refrig 33:1356–1369

    Article  Google Scholar 

  23. Li GQ, Wu Z, Li W, Wang ZK, Wang X, Li HX, Yao SC (2012) Experimental investigation of condensation in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 37:19–28

    Article  Google Scholar 

  24. Wu X, Zhu Y, Tang Y (2015) New experimental data of CO2 flow boiling in mini tube with micro fins of zero helix angle. Int J Refrig 59:281–294

    Article  Google Scholar 

  25. Sagawa K, Jige D, Inoue N, Haba T (2015) Pressure drop and heat transfer for flow boiling inside horizontal smooth and internally-grooved small-diameter tubes. Proc of international congress of refrigeration – ICR2015 Yokohama Japan

  26. Diani A, Cavallini A, Rossetto L (2017) R1234yf condensation inside a 3.4 mm ID horizontal microfin tube. Int J Refrig 75:178–189

    Article  Google Scholar 

  27. Lemmon EW, Huber ML, McLinden MO (2013) NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. Version 9.1. National Institute of Standards and Technology, standard reference data program, Gaithersburg

  28. Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13:383–393

    Article  Google Scholar 

  29. Kline SJ, McClintock FA (1953) Describing the uncertainties in single sample uncertainties. Mech Eng 75(1):3–8

    Google Scholar 

  30. Cavallini A, Del Col D, Matkovic M, Rossetto L (2009) Frictional pressure drop during vapour-liquid flow in minichannel: modelling and experimental evaluation. Int J Heat Fluid Flow 30:131–139

    Article  Google Scholar 

  31. Zurcher O, Thome JR, Favrat D (2000) An onset of nucleate boiling criterion for horizontal flow boiling. Int J Therm Sci 39:909–918

    Article  Google Scholar 

  32. Steiner D, Taborek J (1992) Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transf Eng 13:43–69

    Article  Google Scholar 

  33. Cavallini A, Del Col D, Rossetto L (2006) Flow boiling inside microfin tubes: prediction of the heat transfer coefficient. Proc of ECI International Conference on Boiling Heat Transfer, Spoleto Italy

    Google Scholar 

  34. Beattie DH, Whalley PB (1982) Simple two-phase frictional pressure drop calculation method. Int J Multhiphas Flow 8:83–87

    Article  Google Scholar 

  35. Churchill SW (1977) Friction factor equation spans all fluid flow regimes. Chem Eng 84:91–92

    Google Scholar 

Download references

Acknowledgments

The support of Wieland-Werke AG and of Dr. Christoph Walther on this research activity is gratefully acknowledged. The support of the MIUR through the PRIN Project 2009TSYPM7_003 and of the Università di Padova (Project CPDA107382 and Project CPDR141037) on this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Diani.

Additional information

Highlights

• Flow boiling of R134a is studied inside a 2.4 mm ID microfin tube.

• Heat transfer coefficients and frictional pressure drops are measured.

• R134a thermal and hydraulic behavior is compared against that of R1234ze(E) and R1234yf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diani, A., Rossetto, L. Experimental analysis of refrigerants flow boiling inside small sized microfin tubes. Heat Mass Transfer 54, 2315–2329 (2018). https://doi.org/10.1007/s00231-017-2111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2111-7

Keywords

Navigation