Log in

Experiments on torrefaction of Dichrostachys cinerea wood: two-level factorial design and thermogravimetric analysis

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effect of the temperature and reaction time variables on the solid yield and the increment of heating values and composition of torrefied Dichrostachys cinerea wood by using a factorial experiment design and thermogravimetric analysis. The significant factors were identified by means of a two-level factorial design type (22), for which the statistical software Design Expert version 10 was used. Torrefaction and thermogravimetric experimental runs were carried out in a fixed-bed reactor and thermobalance TGA–DTA, respectively. Torrefaction temperature, residence time and their interaction have a significant effect on solid yield, whilst the effect of the temperature was the only statistically significant factor on increment at a high heating value (HHV). The R-Squared values for both response variables were greater than 95% in each case. An increase in torrefied biomass was achieved at HHVs of 14.92 and 30.31% under the conditions of 120 min at 250 and 290 °C, respectively. Thermogravimetric characterisation and DTG–TG curves of the torrefied material suggest that the pre-treated material has been modified chemically and structurally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu NR, Foppa PE, Riva G, Romero RO (2010) Caracterización energética del Marabú (Energetic characterization of Marabu). DYNA Ingeniería e Industria 85(7):581–592

    Article  Google Scholar 

  • Abreu NR, Conesa JA, Pedretti EF, Romero OR (2012) Kinetic analysis: simultaneous modelling of pyrolysis and combustion processes of dichrostachys cinerea. Biomass Bioenergy 36:170–175

    Article  Google Scholar 

  • Anderson MJ, Whitcomb PJ (2015) DOE simplified: practical tools for effective experimentation. CRC Press, Boca Rotan

    Book  Google Scholar 

  • Anderson MJ, Whitcomb PJ (2016) DOE simplified: practical tools for effective experimentation. CRC Press, Boca Rotan

    Google Scholar 

  • Bach Q-V, Chen W-H, Chu Y-S, Skreiberg Ø (2016) Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour Technol 215:239–246

    Article  CAS  PubMed  Google Scholar 

  • Bach Q-V, Skreiberg Ø, Lee C-J (2017) Process modeling and optimization for torrefaction of forest residues. Energy. https://doi.org/10.1016/j.energy.2017.07.040

    Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    Article  CAS  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass Chem Eng J 91:87–102

    CAS  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Caballero JA, Conesa JA, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis 42:159–175

    Article  CAS  Google Scholar 

  • Calvelo Pereira R et al (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42:1331–1342

    Article  CAS  Google Scholar 

  • Carmenate Germán H, Pérez Montesbravo E, Paredes Rodríguez E, Blanco Calas P (2008) Biología reproductiva de Dichrostachys cinerea (L) Wight & Arn. (Marabú). (I) Evaluación de reproducción por semillas (Reproductive biology of Dichrostachys cinerea (L) Wight & Arn. (Marabú). (I) Evaluation of reproduction by seeds) (In Spanish). Fitosanidad 12:39–43

    Google Scholar 

  • Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063

    Article  CAS  Google Scholar 

  • Conesa JA, Martín-Gullón I, Font R, Jauhiainen J (2004) Complete Study of the Pyrolysis and Gasification of Scrap Tires in a Pilot Plant Reactor. Environ Sci Technol 38:3189–3194

    Article  CAS  PubMed  Google Scholar 

  • Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez JJ (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571

    Article  CAS  Google Scholar 

  • Cummins EJ, McDonnell KP, Ward SM (2006) Dispersion modelling and measurement of emissions from the co-combustion of meat and bone meal with peat in a fluidised bed. Bioresour Technol 97:903–913

    Article  CAS  PubMed  Google Scholar 

  • de Sales CAVB et al (2017) Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents. Energy Convers Manag 145:314–323. https://doi.org/10.1016/j.enconman.2017.04.101

    Article  Google Scholar 

  • Domec J-C, Ashley E, Fischer M, Noormets A, Boone J, Williamson JC, King JS (2017) Productivity, Biomass Partitioning, and Energy Yield of Low-Input Short-Rotation American Sycamore (Platanus occidentalis L.) Grown on Marginal Land: effects of Planting Density and Simulated Drought. BioEnergy Research 10:903–914

    Article  Google Scholar 

  • Fegade SL, Tande BM, Cho H, Seames WS, Sakodynskaya I, Muggli DS, Kozliak EI (2013) Aromatization of propylene over Hzsm-5: a design of experiments (DOE) approach. Chem Eng Commun 200:1039–1056

    Article  CAS  Google Scholar 

  • Fernández M, García-Albalá J, Andivia E, Alaejos J, Tapias R, Menéndez J (2015) Sickle bush (Dichrostachys cinerea L.) field performance and physical–chemical property assessment for energy purposes. Biomass Bioenergy 81:483–489

    Article  Google Scholar 

  • Gronli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Ind Eng Chem Res 41:4201–4208

    Article  CAS  Google Scholar 

  • Jaya Shankar T, Christopher TW, Richard DB, Richard JH, Shahab S (2011) Review on biomass torrefaction process and product properties and design of moving bed torrefaction system model development. Louisville Kentucky. https://doi.org/10.13031/2013.37192

    Google Scholar 

  • Kaygusuz K (2009) Biomass as a Renewable Energy Source for Sustainable Fuels Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 31:535–545

    CAS  Google Scholar 

  • Li S-X, Zou J-Y, Li M-F, Wu X-F, Bian J, Xue Z-M (2017) Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction. Energy 124:321–329

    Article  CAS  Google Scholar 

  • Magdziarz A, Wilk M, Zajemska M (2011) Modelling of pollutants concentrations from the biomass combustion process. Chemical and Process Engineering 32:423–433

    CAS  Google Scholar 

  • Mei Y, Che Q, Yang Q, Draper C, Yang H, Zhang S, Chen H (2016) Torrefaction of different parts from a corn stalk and its effect on the characterization of products. Ind Crops Prod 92:26–33

    Article  CAS  Google Scholar 

  • Monedero E, Hernández J, Collado R (2017) Combustion-Related Properties of Poplar. Willow and Black Locust to be used as Fuels in Power Plants Energies 10:997

    Google Scholar 

  • Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials three independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  • Pedroso DT, Kaltschmitt M (2012) Dichrostachys cinerea as a possible energy crop—facts and figures. Biomass Conversion and Biorefinery 2:41–51

    Article  CAS  Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Mañana M, Delgado F, Tejedor C (2011) Energetic density of different forest species of energy crops in Cantabria (Spain). Biomass Bioenergy 35:4657–4664

    Article  Google Scholar 

  • Pipatmanomai S, Fungtammasan B, Bhattacharya S (2009) Characteristics and composition of lignites and boiler ashes and their relation to slagging: the case of Mae Moh PCC boilers. Fuel 88:116–123

    Article  CAS  Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 2. Analysis of products J Anal Appl Pyrolysis 77:35–40

    Article  CAS  Google Scholar 

  • Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environmental Progress & Sustainable Energy 28:427–434

    Article  CAS  Google Scholar 

  • Sánchez F, San Miguel G (2016) Improved fuel properties of whole table olive stones via pyrolytic processing. Biomass Bioenergy 92:1–11

    Article  Google Scholar 

  • Schaffel N, Mancini M (2009) Szle¸k A, Weber R. Mathematical modeling of MILD combustion of pulverized coal Combust Flame 156:1771–1784

    CAS  Google Scholar 

  • Soudham VP (2009) Acetosolv delignification of Dichrostachys cinerea biomass for ethanol production. Master thesis, University College of Borås

  • Tumuluru JS, Sokhansanj S, Wright CT, Boardman RD (2010) Biomass torrefaction process review and moving bed torrefaction system model development. Idaho National Laboratory Biofuels and Renewable Energy Technologies Department & Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group, Idaho

  • Uemura Y, Matsumoto R, Saadon S, Matsumura Y (2015) A study on torrefaction of Laminaria japonica. Fuel Process Technol 138:133–138

    Article  CAS  Google Scholar 

  • Ulrich GD (1984) A guide to chemical engineering process design and economics. Wiley, New York

    Google Scholar 

  • Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762

    Google Scholar 

  • Van Krevelen D (1993) Coal typology physics chemistry constitution. Elsevier, Amsterdam

    Google Scholar 

  • Villegas APJ, Prieto GJO (2009) Estudio cinético durante la conversión termoquímica del marabú (Kinetic study during the thermochemical conversion of marabu) (In Spanish) Revista Cubana de Química Vol. XXI, No 1

  • Wang L, Barta-Rajnai E, Skreiberg O, Khalil RA, Czegeny Z, Jakab E, Barta Z, Gronly M (2017a) Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Appl Energy. https://doi.org/10.1016/j.apenergy.2017.07.024

    Google Scholar 

  • Wang L, Barta-Rajnai E, Skreiberg O, Khalil R, Czegeny Z, Jakab E, Barta Z, Gronly M (2017b) Impact of Torrefaction on Woody Biomass Properties. Energy Procedia 105:1149–1154

    Article  CAS  Google Scholar 

  • Whitcomb P, Oehlert GW (2007) Graphical selection of effects in general factorials Fall Technical Conference 612:2036

    Google Scholar 

  • Wilk M, Magdziarz A (2017) Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy. https://doi.org/10.1016/j.energy.2017.03.031

    Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financed by a doctoral scholarship from the Università Politecnica Delle Marche, Ancona, Italy, and supported by the Department of Chemical Engineering, University of Alicante, Alicante, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinier Abreu-Naranjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-Naranjo, R., Arteaga Crespo, Y., Foppa Pedretti, E. et al. Experiments on torrefaction of Dichrostachys cinerea wood: two-level factorial design and thermogravimetric analysis. Wood Sci Technol 52, 229–243 (2018). https://doi.org/10.1007/s00226-017-0972-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0972-z

Navigation