Log in

Formation and deposition of pseudo-lignin on liquid-hot-water-treated wood during cooling process

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Pseudo-lignin induced by high-severity dilute acid treatment of lignocellulose has been widely studied because of its detrimental effect on enzymatic hydrolysis. However, cooling-induced pseudo-lignin (CIPL) formed during the cooling process after treatment has always been ignored and never been characterized systematically. To investigate the formation and chemistry of CIPL, liquid hot water treatments of poplar wood were conducted. Samples of treated wood and hydrolysate were taken out from digester at various temperatures during the cooling process for characterization. SEM images evidenced a progressive deposition of CIPL on the surface of the treated wood during cooling process with a yield of 19.6 mg/g treated wood. However, the treated wood which was collected isothermally at reaction temperature showed no pseudo-lignin. Variation of organic compounds in hydrolysate from lignocellulose degradation during cooling process revealed that depolymerized lignin and furfural accounted for 80.4 and 10.6 % of CIPL, respectively, while soluble saccharides from carbohydrate hydrolysis were independent from CIPL formation. These findings stress the importance of isothermal separation of treated wood and hydrolysate. Otherwise, CIPL should hinder enzymatic hydrolysis for biofuels production or delignification for cellulosic fiber production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  CAS  PubMed  Google Scholar 

  • Bardet M, Robert DR, Lundquist K (1985) On the reactions and degradation of the lignin during steam hydrolysis of aspen wood. Sven Papperstidn 88:61–67

    Google Scholar 

  • Borrega M, Niemelä K, Sixta H (2013) Effect of hydrothermal treatment intensity on the formation of degradation products from birchwood. Holzforschung 67:871–879

    Article  CAS  Google Scholar 

  • Bujanovic BM, Goundalkar MJ, Amidon TE (2012) Increasing the value of a biorefinery based on hot-water extraction: lignin products. Tappi J 11:19–26

    CAS  Google Scholar 

  • Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Fang W, Sixta H (2015) Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water. ChemSusChem 8:73–76

    Article  CAS  PubMed  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Ragauskas A (2014) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Adv 4:4317–4323

    Article  CAS  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  • Leschinsky M, Weber HK, Patt R, Sixta H (2009) Formation of insoluble components during autohydrolysis of Eucalyptus globulus. Lenzinger Berichte 87:16–25

    CAS  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2005) Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 125:175–188

    Article  CAS  PubMed  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Yang X, Zheng X, Chen L, Huang L, Cao S, Akinosho H (2015) Toward a further understanding of hydrothermally pretreated holocellulose and isolated pseudo lignin. Cellulose 22:1687–1696

    Article  CAS  Google Scholar 

  • Miller R, Olsson K, Pernemalm P (1984) Formation of aromatic compounds from carbohydrates. IX. Reaction of d-glucose and l-lysine in slightly acidic, aqueous solution. ACTA Chem Scand B 38:689–694

    Article  Google Scholar 

  • Popoff T, Theander O (1972) Formation of Aromatic Compounds from Carbohydrates: part 1. Reaction of d-glucuronic Acid, d-glacturonic Acid, d-xylose, and l-arabinose in slightly acidic, aqueous solution. Carbohydr Res 22:135–149

    Article  CAS  Google Scholar 

  • Popoff T, Theander O (1976) Formation of aromatic-compounds from carbohydrates. 3. Reaction of d-glucose and d-fructose in slightly acidic, aqueous-solution. ACTA Chem Scand B 30:397–402

    Article  Google Scholar 

  • Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310

    Article  CAS  Google Scholar 

  • Schütt F, Puls J, Saake B (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459

    Article  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Progr 23:1333–1339

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Testova L, Chong S-L, Tenkanen M, Sixta H (2011) Autohydrolysis of birch wood. Holzforschung 65:535–542

    Article  CAS  Google Scholar 

  • Vena PF, Brienzo M, del Prado García-Aparicio M, Görgens JF, Rypstra T (2013) Hemicelluloses extraction from giant bamboo (Bambusa balcooa Roxburgh) prior to kraft or soda-AQ pul** and its effect on pulp physical properties. Holzforschung 67:863–870

    Article  CAS  Google Scholar 

  • Wang Z, Wang X, Jiang J, Fu Y, Qin M (2015) Fractionation and characterization of saccharides and lignin components in wood prehydrolysis liquor from dissolving pulp production. Carbohydr Polym 126:185–191

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101:4895–4899

    Article  CAS  PubMed  Google Scholar 

  • Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Science Foundation of China (31570571, 31300492, 31370581), especially the NSFC project entitled Molecular Interactions Between Depolymerized Lignin and Cellulase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Wang, X., Xu, J. et al. Formation and deposition of pseudo-lignin on liquid-hot-water-treated wood during cooling process. Wood Sci Technol 51, 165–174 (2017). https://doi.org/10.1007/s00226-016-0872-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0872-7

Keywords

Navigation