Log in

Osteomimicry: How the Seed Grows in the Soil

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Metastasis is defined as a very inefficient process, since less than 0.01% of cancer cells injected into the circulation will engraft in a distant organ, where they must acquire the ability to survive and proliferate inside a “foreign” environment. In bone metastases, the interaction with the host organ is much more favoured if tumour cells gain “osteomimicry”, that is the ability to resemble a resident bone cell (i.e. the osteoblast), thus intruding in the physiology of the bone. This is accomplished by the expression of osteoblast markers (e.g. alkaline phosphatase) and the production of bone matrix proteins and paracrine factors which deregulate the physiology of bone, fuelling the so-called “vicious cycle”. The main challenge of researchers is therefore to identify the genetic profile determining the osteotropism of tumour cells, which would eventually lead to bone colonisation. This could likely provide the answer to a quite intriguing question, that is why some cancers, such as prostate and breast, have a specific predilection to metastasise to the bone. Therefore, it is important to completely address the molecular mechanisms underlying this aspect of bone oncology, identifying relevant pathways, the targeting of which could make any type of bone metastasis curable or avoidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fidler IJ (1970) Metastasis: quantitative analysis of the distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    CAS  PubMed  Google Scholar 

  2. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  3. Ewing J (1928) A treatise on tumours, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  4. Bubendorf L, Schopfer A, Wagner U (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31:578–583

    Article  CAS  PubMed  Google Scholar 

  5. Coleman RE (2016) Impact of bone-targeted treatments on skeletal morbidity and survival in breast cancer. Oncology 30(8):695 (Williston Park)

    PubMed  Google Scholar 

  6. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  7. Lacey D, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qiann YX, Kaufman S, Sarosi I, Shalshoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  8. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Program Amgen EST, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  9. **ong J, Piemontese M, Onal M, Campbell J, Goelner JJ, Dusevich V, Bonewald L, Manolagas SC, O’Brian CA (2015) Osteocytes not osteoblasts or lining cells are the main source of the RANKL required for osteoclast formation in remodelling bone. PLoS ONE 10:e0138189

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, Lydon JP (2009) The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 328:127–139

    Article  CAS  PubMed  Google Scholar 

  11. Kong YY, Boyle WJ, Penninger JM (1999) Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 77:188–193

    Article  CAS  PubMed  Google Scholar 

  12. Anderson DM, Maraskovsky E, Billigsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  CAS  PubMed  Google Scholar 

  13. Kim W, Takyar FM, Swan K, Jeong J, vanHouten J, Sullivan CA, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J (2016) Calcium-sensing receptor (CaSR) promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res 76:5348–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Byun MR, Hwang JH, Kim AR, Kim KM, Hwang ES, Yaffe MB, Hong JH (2014) Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 21:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ducy P, Zhang R, Geoffroy V, Ridall AI, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  CAS  PubMed  Google Scholar 

  16. Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F (2010) Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem 111:1199–1209

    Article  CAS  PubMed  Google Scholar 

  17. Curatolo C, Ludovico GM, Correale M, Pagliarulo A, Abbate I, Cirrillo Marucco E, Barletta A (1992) Advanced prostate cancer follow-up with prostate-specific antigen, prostatic acid phosphatase, osteocalcin and bone isoenzyme of alkaline phosphatase. Eur Urol 21(Suppl 1):105–107

    Article  PubMed  Google Scholar 

  18. Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261

    Article  CAS  PubMed  Google Scholar 

  19. Knerr K, Ackermann K, Neidhart T, Pyerin W (2004) Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int J Cancer 111:152–159

    Article  CAS  PubMed  Google Scholar 

  20. Bellahcène A, Bachelier R, Detry C, Lidereau R, Clézardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148

    Article  PubMed  Google Scholar 

  21. Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY, Wong YC, Wang X, Chan KW (2008) TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29:1509–1518

    Article  CAS  PubMed  Google Scholar 

  22. Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, Wang QS, Feng YM (2016) Breast cancer cells obtain an osteomimetic feature via epithelial/mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 7:79688–79705

    PubMed  PubMed Central  Google Scholar 

  23. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise T, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  24. Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA (2007) Bone regeneration is regulated by wnt signalling. J Bone Miner Res 22:1913–1923

    Article  CAS  PubMed  Google Scholar 

  25. Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windhal SH, Farman H, Kindlund B, Engdahl C, Koskela A, Zhang FP, Eriksson EE, Zaman F, Hammarstedt A, Isaksson H, Bally M, Kassem A, Lindholm C, Sandberg O, Aspenberg P, Savendahl L, Feng JQ, Tuckermann J, Tuukkanen J, Poutanen M, Baron R, Lerner UH, Gori F, Ohlsson C (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:279–1288

    Article  Google Scholar 

  26. Hall CL, Bafico A, Dai J, Aaronson SA, Kellet ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnt. Cancer Res 65:7554–7560

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA (2004) Up-regulation of Wnt-1 and -catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356

    Article  CAS  PubMed  Google Scholar 

  28. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28

    Article  CAS  PubMed  Google Scholar 

  29. Chu CYG, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung WK (2014) RANK-and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 21:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holen H, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62:1619–1623

    CAS  PubMed  Google Scholar 

  31. Neville-Webbe HL, Cross NA, Eaton CL, Nyambo R, Evans CA, Coleman RE, Holen I (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–279

    Article  CAS  PubMed  Google Scholar 

  32. Higgs JT, Jarboe JS, Lee JH, Chanda D, Lee CM, Deivanayagam C, Ponnazhagan S (2015) Variants of osteoprotegerin lacking TRAIL binding for therapeutic bone remodeling in osteolytic malignancies. Mol Cancer Res 13:819–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher LW, Fedarko NS (2003) Six genes expressed in bone and teeth encode the current members of the SIBLING family proteins. Connect Tissue Res 44(Suppl1):33–40

    Article  CAS  PubMed  Google Scholar 

  34. Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277

    CAS  PubMed  Google Scholar 

  35. Carlinfante G, Vassilioul D, Svensson O, Wendel M, Heinegard D, Andersson G (2003) Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 20:437–444

    Article  CAS  PubMed  Google Scholar 

  36. Shevde LA, Das S, Clark DW, Samant RS (2010) Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med 10:71–81

    Article  CAS  PubMed  Google Scholar 

  37. Das S, Tucker JA, Khullar S, Samant RS, Shevde LA (2012) Hedgehog signalling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS ONE 7:e34374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellahcène A, Merville MP, Castronovo V (1994) Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res 54:2823–2826

    PubMed  Google Scholar 

  39. Waltregny D, Bellahcène A, Van Riet I, Fisher LW, Young M, Fernandez P, Dewé W, de Leval J, Castronovo V (1998) Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 90:1000–1008

    Article  CAS  PubMed  Google Scholar 

  40. Zhang JH (2004) Bone sialoprotein promotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res 24:1361–1368

    CAS  PubMed  Google Scholar 

  41. Reufsteck C, Lifshitz-Shovali R, Zepp M, Bäuerle T, Kübler D, Golomb G, Berger MR (2012) Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metastasis 29:441–456

    Article  CAS  PubMed  Google Scholar 

  42. Yeung F, Law WK, Yeh CH, Westendorf JJ, Zhang Y, Wang R, Kao C, Chung LW (2002) Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 277:2468–2476

    Article  CAS  PubMed  Google Scholar 

  43. Huang WC, **e Z, Konaka H, Sodek J, Zhau HE, Chung LWK (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signalling pathway. Cancer Res 65:2303–2313

    Article  CAS  PubMed  Google Scholar 

  44. Jacob K, Webber M, Benayahu D, Kleinman HK (1999) Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 59:4453–4457

    CAS  PubMed  Google Scholar 

  45. Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung WKL (2011) β2-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71:2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaiser J (2016) Malignant messengers. Science 352:164–166

    Article  CAS  PubMed  Google Scholar 

  49. Itoh T, Ito Y, Ohtsuki Y, Ando M, Tsukamasa Y, Yamada N, Naoe T, Akao Y (2012) Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast differentiation. J Mol Histol 43:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karlsson T, Lundholm M, Widmark A, Persson E (2016) Tumor-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS ONE 11:e0166284

    Article  PubMed  PubMed Central  Google Scholar 

  51. Andersen TL, Boissy P, Sondergaard TE, Kupisiewicz K, Plesner T, Rasmussen T, Haaber J, Kølvraa S, Delaissé JM (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    Article  CAS  PubMed  Google Scholar 

  52. Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15:188–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Rucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rucci, N., Teti, A. Osteomimicry: How the Seed Grows in the Soil. Calcif Tissue Int 102, 131–140 (2018). https://doi.org/10.1007/s00223-017-0365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0365-1

Keywords

Navigation