Log in

A Clinical and Molecular Overview of the Human Osteopetroses

  • Review article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The osteopetroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density due to a defect in osteoclastic bone resorption. In humans, several types can be distinguished and a classification has been made based on their mode of inheritance, age of onset, severity, and associated clinical symptoms. The best-known forms of osteopetrosis are the malignant and intermediate autosomal recessive forms and the milder autosomal dominant subtypes. In addition to these forms, a restricted number of cases have been reported in which additional clinical features unrelated to the increased bone mass occur. During the last years, molecular genetic studies have resulted in the identification of several disease-causing gene mutations. Thus far, all genes associated with a human osteopetrosis encode proteins that participate in the functioning of the differentiated osteoclast. This contributed substantially to the understanding of osteoclast functioning and the pathogenesis of the human osteopetroses and will provide deeper insights into the molecular pathways involved in other bone pathologies, including osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324

    Article  PubMed  CAS  Google Scholar 

  2. Baron R, Neff L, Roy C, Boisvert A, Caplan M (1986) Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell 46:311–320

    PubMed  CAS  Google Scholar 

  3. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    PubMed  CAS  Google Scholar 

  4. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    PubMed  CAS  Google Scholar 

  5. Stoker DJ, (2002) Osteopetrosis. Semin Musculoskelet Radiol 6:299–305

    Article  PubMed  Google Scholar 

  6. Phadke SR, Gupta A, Pahi J, Pandey A, Gautam P, Agarwal SS (1999) Malignant recessive osteopetrosis. Indian Pediatr 36:69–74

    PubMed  CAS  Google Scholar 

  7. Fasth A, Porras O (1999) Human malignant osteopetrosis: pathophysiology, management and the role of bone marrow transplantation. Pediatr Transplant 3 (Suppl 1):102–107

    PubMed  Google Scholar 

  8. Wilson CJ, Vellodi A (2000) Autosomal recessive osteopetrosis: diagnosis, management, and outcome. Arch Dis Child 83:449–452

    PubMed  CAS  Google Scholar 

  9. Mohn A, Capanna R, Delli Pizzi C, Morgese G, Chiarelli F (2004) Autosomal malignant osteopetrosis. From diagnosis to therapy. Minerva Pediatr 56:115–118

    PubMed  CAS  Google Scholar 

  10. Gerritsen EJ, Vossen JM, van Loo IH, Hermans J, Helfrich MH, Griscelli C, Fischer A (1994) Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics 93:247–253

    PubMed  CAS  Google Scholar 

  11. Gerritsen EJ, Vossen JM, Fasth A, Friedrich W, Morgan G, Padmos A, Vellodi A, Porras O, O’Meara A, Porta F (1994) Bone marrow transplantation for autosomal recessive osteopetrosis A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J Pediatr 125:896–902

    PubMed  CAS  Google Scholar 

  12. Key LL, Jr., Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332:1594–1599

    Article  PubMed  Google Scholar 

  13. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    PubMed  CAS  Google Scholar 

  14. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  PubMed  CAS  Google Scholar 

  15. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Superti Furga A, Valiaho J, van Hove JL, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    Article  PubMed  CAS  Google Scholar 

  16. Michigami T, Kageyama T, Satomura K, Shima M, Yamaoka K, Nakayama M, Ozono K (2002) Novel mutations in the a3 subunit of vacuolar H(+)-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30:436–439

    Article  PubMed  CAS  Google Scholar 

  17. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A (2003) Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68

    PubMed  CAS  Google Scholar 

  18. Scimeca JC, Quincey D, Parrinello H, Romatet D, Grosgeorge J, Gaudray P, Philip N, Fischer A, Carle GF (2003) Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum Mutat 21:151–157

    Article  PubMed  CAS  Google Scholar 

  19. Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garcia-Palacios V, Oakley JI, Orchard PJ (2004) In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res 19:1329–1338

    PubMed  Google Scholar 

  20. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  PubMed  CAS  Google Scholar 

  21. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    Article  PubMed  CAS  Google Scholar 

  22. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747

    PubMed  CAS  Google Scholar 

  23. Shin YJ (2004) Chloride channel CICN7 mutations in a Korean patient with infantile malignant osteopetrosis initially presenting with neonatal thrombocytopenia. J Perinatol 24:312–314

    PubMed  CAS  Google Scholar 

  24. Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545

    PubMed  CAS  Google Scholar 

  25. Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091

    PubMed  CAS  Google Scholar 

  26. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406

    Article  PubMed  CAS  Google Scholar 

  27. Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J (2001) The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone 28:513–523

    Article  PubMed  CAS  Google Scholar 

  28. Fischer T, De Vries L, Meerloo T, Farquhar MG (2003) Promotion of G alpha i3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci USA 100:8270–8275

    PubMed  CAS  Google Scholar 

  29. Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C (2004) Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat 23:471–476

    PubMed  CAS  Google Scholar 

  30. Quarello P, Forni M, Barberis L, Defilippi C, Campagnoli MF, Silvestro L, Frattini A, Chalhoub N, Vacher J, Ramenghi U (2004) Severe malignant osteopetrosis caused by a GL gene mutation. J Bone Miner Res 19:1194–1199

    PubMed  Google Scholar 

  31. Teti A, Migliaccio S, Taranta A, Bernardini S, De Rossi G, Luciani M, Iacobini M, De Felice L, Boldrini R, Bosman C, Corsi A, Bianco P (1999) Mechanisms of osteoclast dysfunction in human osteopetrosis: abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures. J Bone Miner Res 14:2107–2117

    PubMed  CAS  Google Scholar 

  32. Flanagan AM, Sarma U, Steward CG, Vellodi A, Horton MA (2000) Study of the nonresorptive phenotype of osteoclast-like cells from patients with malignant osteopetrosis: a new approach to investigating pathogenesis. J Bone Miner Res 15:352–360

    PubMed  CAS  Google Scholar 

  33. Helfrich MH, Gerritsen EJ (2001) Formation of non-resorbing osteoclasts from peripheral blood mononuclear cells of patients with malignant juvenile osteopetrosis. Br J Haematol 112:64–68

    Article  PubMed  CAS  Google Scholar 

  34. Alexander WG (1923) Report of a case of so-called “marble bones” with a review of the literature and a translation of an article. Am J Roentgenol 10:280–301

    Google Scholar 

  35. Kahler SG, Burns JA, Aylsworth AS (1984) A mild autosomal recessive form of osteopetrosis. Am J Med Genet 17:451–464

    Article  PubMed  CAS  Google Scholar 

  36. Bejaoui M, Baraket M, Lakhoua R, Mezni F, Hammou Jeddi A, Kamoun A, Kharrat H, Essoussi S, Harbi A, Ben Dridi MF (1992) [Recessive osteopetrosis Identification of a form of medium severity.] Arch Fr Pediatr 49:627–631

    PubMed  CAS  Google Scholar 

  37. Colonia AM, Schaimberg CG, Yoshinari NH, Santos M, Jorgetti V, Cossermelli W (1993) [Osteopetrosis: report of 2 cases and review of the literature.] Rev Hosp Clin Fac Med Sao Paulo 48:242–247

    PubMed  CAS  Google Scholar 

  38. Cure JK, Key LL, Goltra DD, VanTassel P (2000) Cranial MR imaging of osteopetrosis. AJNR Am J Neuroradiol 21:1110–1115

    PubMed  CAS  Google Scholar 

  39. Campos-Xavier AB, Saraiva JM, Ribeiro LM, Munnich A, Cormier-Daire V (2003) Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet 112:186–189

    PubMed  Google Scholar 

  40. Bollerslev J, Andersen PE, Jr. (1988) Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 9:7–13

    PubMed  CAS  Google Scholar 

  41. Kovacs CS, Lambert RG, Lavoie GJ, Siminoski K (1995) Centrifugal osteopetrosis: appendicular sclerosis with relative sparing of the vertebrae. Skeletal Radiol 24:27–29

    PubMed  CAS  Google Scholar 

  42. Johnston CC Jr, Lavy N, Lord T, Vellios F, Merritt AD, Deiss WP Jr (1968) Osteopetrosis. A clinical, genetic, metabolic, and morphologic study of the dominantly inherited, benign form. Medicine (Baltimore) 47:149–167

    Google Scholar 

  43. Bollerslev J (1987) Osteopetrosis A genetic and epidemiological study. Clin Genet 31:86–90

    PubMed  CAS  Google Scholar 

  44. Van Hul E, Gram J, Bollerslev J, Van Wesenbeeck L, Mathysen D, Andersen PE, Vanhoenacker F, Van Hul W (2002) Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res 17:1111–1117

    PubMed  Google Scholar 

  45. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771

    PubMed  Google Scholar 

  46. Johnson ML, Harnish K, Nusse R, Van Hul W (2004) LRP5 and Wnt Signaling: A Union Made for Bone. J Bone Miner Res 19:1749–1757

    PubMed  CAS  Google Scholar 

  47. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19

    Article  PubMed  CAS  Google Scholar 

  48. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  PubMed  CAS  Google Scholar 

  49. Boyden LM, Insogna K, Lifton RP (2004) High-bone-mass disease and LRP5 (author’s reply). N Engl J Med 350:2098–2099

    CAS  Google Scholar 

  50. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  51. Bollerslev J, (1989) Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical, and hormonal aspects. Endocr Rev 10:45–67

    Article  PubMed  CAS  Google Scholar 

  52. Bollerslev J, Mosekilde L (1993) Autosomal dominant osteopetrosis. Clin Orthop (294):45–51

    Google Scholar 

  53. Benichou O, Laredo J, de Vernejoul MC (2000) Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestations in 42 patients. Bone 26:87–93

    PubMed  CAS  Google Scholar 

  54. Waguespack SG, Buckwalter KA, Econs MJ (2000) Autosomal dominant osteopetrosis: clinical severity and natural history. J Bone Miner Res 15:S1;S578

    Google Scholar 

  55. Thomson J (1949) Osteopetrosis in successive generations. Arch Dis Child 24:143–148

    PubMed  CAS  Google Scholar 

  56. Walpole IR, Nicoll A, Goldblatt J (1990) Autosomal dominant osteopetrosis type II with “malignant” presentation: further support for heterogeneity? Clin Genet 38:257–263

    PubMed  CAS  Google Scholar 

  57. Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, Johnson M, Kocisko M, Evans WE, Foroud T, Econs MJ (2003) Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res 18:1513–1518

    PubMed  CAS  Google Scholar 

  58. Letizia C, Taranta A, Migliaccio S, Caliumi C, Diacinti D, Delfini E, D’Erasmo E, Iacobini M, Roggini M, Albagha OM, Ralston SH, Teti A (2004) Type II benign osteopetrosis (Albers-Schonberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int 74:42–46

    PubMed  CAS  Google Scholar 

  59. Flanagan AM, Massey HM, Wilson C, Vellodi A, Horton MA, Steward CG (2002) Macrophage colony-stimulating factor and receptor activator NF-kappaB ligand fail to rescue osteoclast-poor human malignant infantile osteopetrosis in vitro. Bone 30:85–90

    Article  PubMed  CAS  Google Scholar 

  60. Monaghan BA, Kaplan FS, August CS, Fallon MD, Flannery DB (1991) Transient infantile osteopetrosis. J Pediatr 118:252–256

    PubMed  CAS  Google Scholar 

  61. Whyte MP (1993) Carbonic anhydrase II deficiency. Clin Orthop 294:52–63

    PubMed  Google Scholar 

  62. Sly WS, Sato S, Zhu XL (1991) Evaluation of carbonic anhydrase isozymes in disorders involving osteopetrosis and/or renal tubular acidosis. Clin Biochem 24:311–318

    Article  PubMed  CAS  Google Scholar 

  63. Strisciuglio P, Hu PY, Lim EJ, Ciccolella J, Sly WS (1998) Clinical and molecular heterogeneity in carbonic anhydrase II deficiency and prenatal diagnosis in an Italian family. J Pediatr 132:717–720

    PubMed  CAS  Google Scholar 

  64. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS (2004) Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 24:272

    Article  PubMed  CAS  Google Scholar 

  65. Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, Ozen S, Mocan H, Shah GN, Sly WS, Karet FE (2003) A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet 40:115–121

    Article  PubMed  CAS  Google Scholar 

  66. Steward CG (2003) Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol 29:87–97

    Article  PubMed  CAS  Google Scholar 

  67. Ambler MW, Trice J, Grauerholz J, O’Shea PA (1983) Infantile osteopetrosis and neuronal storage disease. Neurology 33:437–441

    PubMed  CAS  Google Scholar 

  68. Jagadha V, Halliday WC, Becker LE, Hinton D (1988) The association of infantile osteopetrosis and neuronal storage disease in two brothers. Acta Neuropathol (Berl) 75:233–240

    CAS  Google Scholar 

  69. Rees H, Ang LC, Casey R, George DH (1995) Association of infantile neuroaxonal dystrophy and osteopetrosis: a rare autosomal recessive disorder. Pediatr Neurosurg 22:321–327

    Article  PubMed  CAS  Google Scholar 

  70. Fitch N, Carpenter S, Lachance RC (1973) Prenatal axonal dystrophy and osteopetrosis. Arch Pathol 95:298–301

    PubMed  CAS  Google Scholar 

  71. Lehman RA, Reeves JD, Wilson WB, Wesenberg RL (1977) Neurological complications of infantile osteopetrosis. Ann Neurol 2:378–384

    Article  PubMed  CAS  Google Scholar 

  72. el Khazen N, Faverly D, Vamos E, Van Regemorter N, Flament-Durand J, Carton B, Cremer-Perlmutter N (1986) Lethal osteopetrosis with multiple fractures in utero. Am J Med Genet 23:811–819

    PubMed  CAS  Google Scholar 

  73. Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285

    PubMed  CAS  Google Scholar 

  74. Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, Durand P, Doffinger R, Smahi A, Israel A, Courtois G, Brousse N, Blanche S, Munnich A, Fischer A, Casanova JL, Bodemer C (2002) Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109:e97

    Article  PubMed  Google Scholar 

  75. Mansour S, Woffendin H, Mitton S, Jeffery I, Jakins T, Kenwrick S, Murday VA (2001) Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99:172–177

    Article  PubMed  CAS  Google Scholar 

  76. Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL, Israel A (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11:2371–2375

    Article  PubMed  CAS  Google Scholar 

  77. Yarali N, Fisgin T, Duru F, Kara A (2003) Osteopetrosis and Glanzmann’s thrombasthenia in a child. Ann Hematol 82:254–256

    PubMed  CAS  Google Scholar 

  78. Nair S, Ghosh K, Kulkarni B, Shetty S, Mohanty D (2002) Glanzmann’s thrombasthenia: updated. Platelets 13:387–393

    Article  PubMed  CAS  Google Scholar 

  79. McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440

    Article  PubMed  CAS  Google Scholar 

  80. Horton MA, Massey HM, Rosenberg N, Nicholls B, Seligsohn U, Flanagan AM (2003) Upregulation of osteoclast alpha2beta1 integrin compensates for lack of alphavbeta3 vitronectin receptor in Iraqi-Jewish-type Glanzmann thrombasthenia. Br J Haematol 122:950–957

    Article  PubMed  CAS  Google Scholar 

  81. Lerman-Sagie T, Levi Y, Kidron D, Grunebaum M, Nitzan M (1987) Syndrome of osteopetrosis and muscular degeneration associated with cerebro-oculo-facio-skeletal changes. Am J Med Genet 28:137–142

    Article  PubMed  CAS  Google Scholar 

  82. Ben Hamouda H, Sfar MN, Braham R, Ben Salah M, Ayadi A, Soua H, Hamza H, Sfar MT (2001) Association of severe autosomal recessive osteopetrosis and Dandy-Walker syndrome with agenesis of the corpus callosum. Acta Orthop Belg 67:528–532

    PubMed  CAS  Google Scholar 

  83. Migliaccio S, Luciani M, Taranta A, De Rossi G, Minisola S, El Hachem M, Bosman C, De Felice L, Boldrini R, Corsi A, Bianco P, Teti A (1999) Association of intermediate osteopetrosis with poikiloderma. J Bone Miner Res 14:834–836

    PubMed  CAS  Google Scholar 

  84. Friede H, Manaligod JR, Rosenthal IM (1985) Craniofacial abnormalities in osteopetrosis with precocious manifestations: report of a case with serial cephalometric roentgenograms. J Craniofac Genet Dev Biol 5:247–257

    PubMed  CAS  Google Scholar 

  85. Krimmel M, Niemann G, Will B, Reinert S (2004) Surgical correction of craniosynostosis in malignant osteopetrosis. J Craniofac Surg 15:218–220; discussion 221

    PubMed  Google Scholar 

  86. Van Wesenbeeck L, Van Hul W Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Crit Rev Eukaryot Gene Expr in press

  87. Motyckova G, Fisher DE (2002) Pycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease. Curr Mol Med 2:407–421

    Article  PubMed  CAS  Google Scholar 

  88. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    PubMed  CAS  Google Scholar 

  89. Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222

    PubMed  CAS  Google Scholar 

  90. Bollerslev J, Marks SC, Jr., Pockwinse S, Kassem M, Brixen K, Steiniche T, Mosekilde L (1993) Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. Bone 14:865–869

    Article  PubMed  CAS  Google Scholar 

  91. Hausler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS, Gillespie MT (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19:1873–1881

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Geert Mortier, MD, PhD, clinical geneticist at the Department of Medical Genetics of the University of Gent (Ghent, Belgium), and Filip Vanhoenacker, MD, PhD, radiologist at the Department of Radiology of the University Hospital of Antwerp (Antwerp, Belgium) who provided us with radiographs of the patients. This study is supported by the fund for scientific research flanders (FWO) with a research project (G.0404.00). WB and LVW are postdoctoral researchers of the FWD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Van Hul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balemans, W., Van Wesenbeeck, L. & Van Hul, W. A Clinical and Molecular Overview of the Human Osteopetroses. Calcif Tissue Int 77, 263–274 (2005). https://doi.org/10.1007/s00223-005-0027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0027-6

Keywords

Navigation