Log in

On the effective Nullstellensatz

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(\mathbb{K}\) be an algebraically closed field and let \(X\subset\mathbb{K}^m\) be an n-dimensional affine variety. Assume that f1,...,f k are polynomials which have no common zeros on X. We estimate the degrees of polynomials \(A_i\in\mathbb{K}[X]\) such that 1=∑ki=1A i f i on X. Our estimate is sharp for kn and nearly sharp for k>n. Now assume that f1,...,f k are polynomials on X. Let \(I=(f_1,\dots,f_k)\subset\mathbb{K}[X]\) be the ideal generated by f i . It is well-known that there is a number e(I) (the Noether exponent) such that √Ie(I)I. We give a sharp estimate of e(I) in terms of n, deg X and deg f i . We also give similar estimates in the projective case. Finally we obtain a result from the elimination theory: if \(f_1,\dots,f_n\in\mathbb{K}[x_1,\dots,x_n]\) is a system of polynomials with a finite number of common zeros, then we have the following optimal elimination:

$$\phi_i(x_i)=\sum^n_{j=1}f_jg_{ij},\quad\ i=1,\dots,n,$$

where \({\deg} f_jg_{ij}\le\prod^n_{i=1}\deg f_i\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brownawell, W.D.: A pure power product version of the Hilbert Nullstellensatz. Mich. Math. J. 45, 581–597 (1998)

    Article  Google Scholar 

  2. Brownawell, W.D.: Bound for the degree in the Nullstellensatz. Ann. Math. 126, 577–591 (1987)

    Google Scholar 

  3. Ein, L., Lazarsfeld, R.: A geometric effective Nullstellensatz. Invent. Math. 137, 427–448 (1999)

    Article  Google Scholar 

  4. Hartshorne, R.: Algebraic Geometry. Berlin, Heidelberg, New York: Springer 1997

  5. Jelonek, Z.: Testing sets for properness of polynomial map**s. Math. Ann. 315, 1–35 (1999)

    Article  Google Scholar 

  6. Jelonek, Z.: Topological characterization of finite map**s. Bull. Pol. Acad. Sci., Math. 49, 375–379 (2001)

    Google Scholar 

  7. Jelonek, Z.: On the Łojasiewicz exponent. To appear

  8. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)

    Google Scholar 

  9. Kollár, J.: Effective Nullstellensatz for arbitrary ideals. J. Eur. Math. Soc. (JEMS) 1, 313–337 (1999)

    Article  Google Scholar 

  10. Perron, O.: Algebra I (Die Grundlagen). Berlin, Leipzig: Walter de Gruyter 1927

  11. Sombra, M.: A sparse effective Nullstellensatz. Adv. Appl. Math. 22, 271–295 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Jelonek.

Additional information

Dedicated to Professor Arkadiusz Płoski

Mathematics Subject Classification (1991)

14D06, 14Q20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelonek, Z. On the effective Nullstellensatz. Invent. math. 162, 1–17 (2005). https://doi.org/10.1007/s00222-004-0434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0434-8

Keywords

Navigation