Log in

Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recent imaging studies in healthy controls with a conditional stop signal reaction time (RT) task have implicated the subthalamic nucleus (STN) in response inhibition and the pre-supplementary motor area (pre-SMA) in conflict resolution. Parkinson’s disease (PD) is characterized by striatal dopamine deficiency and overactivity of the STN and underactivation of the pre-SMA during movement. We used the conditional stop signal RT task to investigate whether PD produced similar or dissociable effects on response initiation, response inhibition and response initiation under conflict. In addition, we also examined inhibition of prepotent responses on three cognitive tasks: the Stroop, random number generation and Hayling sentence completion. PD patients were impaired on the conditional stop signal reaction time task, with response initiation both in situations with or without conflict and response inhibition all being significantly delayed, and had significantly greater difficulty in suppressing prepotent or habitual responses on the Stroop, Hayling and random number generation tasks relative to controls. These results demonstrate the existence of a generalized inhibitory deficit in PD, which suggest that PD is a disorder of inhibition as well as activation and that in situations of conflict, executive control over responses is compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752

    Article  PubMed  CAS  Google Scholar 

  • Baglio F, Blasi V, Falini A, et al. (2009) Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.12.009

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–567

    PubMed  CAS  Google Scholar 

  • Beste C, Willemssen R, Saft C, Falkenstein M (2009) Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia. doi:10.1016/j.neuropsychologia.2009.09.023

  • Bokura H, Yamaguchi S, Kobayashi S (2005) Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia 43:967–975. doi:10.1016/j.neuropsychologia.2004.08.010

    Article  PubMed  Google Scholar 

  • Bouquet CA, Bonnaud V, Gil R (2003) Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task. J Clin Exp Neuropsychol 25:751–760

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111(Pt 2):323–345

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231

    PubMed  Google Scholar 

  • Brown RG, Soliveri P, Jahanshahi M (1998) Executive processes in Parkinson’s disease-random number generation and response suppression. Neuropsychologia 36:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Burgess PW, Shallice T (1997) The Hayling and Brixton tests. Thames Valley Test Company Limited, Bury St Edmunds

    Google Scholar 

  • Cagigas XE, Filoteo JV, Stricker JL, Rilling LM, Friedrich FJ (2007) Flanker compatibility effects in patients with Parkinson’s disease: impact of target onset delay and trial-by-trial stimulus variation. Brain Cogn 63:247–259. doi:10.1016/j.bandc.2006.09.002

    Article  PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863. doi:10.1126/science.1121218

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984. doi:10.1016/j.biopsych.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Hampshire A, Muller U et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555. doi:10.1016/j.biopsych.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  • Chan F, Armstrong IT, Pari G, Riopelle RJ, Munoz DP (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43:784–796. doi:10.1016/j.neuropsychologia.2004.06.026

    Article  PubMed  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22:4563–4567

    PubMed  CAS  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41:1431–1441

    Article  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Tidswell P, Jordan N (1994) Slowed central processing in simple and go/no-go reaction time tasks in Parkinson’s disease. Brain 117(Pt 3):517–529

    Article  PubMed  Google Scholar 

  • Delis DC, Kaplan E, Kramer JH (2001) Delis–Kaplan executive function scale. The Psychological Corporation, San Antonio

    Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • Dirnberger G, Frith CD, Jahanshahi M (2005) Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage 25:588–599. doi:10.1016/j.neuroimage.2004.11.023

    Article  PubMed  Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72

    Article  PubMed  Google Scholar 

  • Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein M, Willemssen R, Hohnsbein J, Hielscher H (2006) Effects of stimulus–response compatibility in Parkinson’s disease: a psychophysiological analysis. J Neural Transm 113:1449–1462. doi:10.1007/s00702-005-0430-1

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science 318:1309–1312. doi:10.1126/science.1146157

    Article  PubMed  CAS  Google Scholar 

  • Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:539–544

    PubMed  CAS  Google Scholar 

  • Harnishfeger KK (1995) The development of cognitive inhibition: Theories, definitions, and research evidence. In: Dempster FN, Brainerd CJ (eds) Interference and inhibition in cognition. Academic Press, San Diego

    Google Scholar 

  • Hayes AE, Davidson MC, Keele SW, Rafal RD (1998) Toward a functional analysis of the basal ganglia. J Cogn Neurosci 10:178–198

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62:1110–1114

    PubMed  CAS  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248. doi:10.1038/nn1830

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28:7209–7218. doi:10.1523/JNEUROSCI.0487-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118(Pt 4):913–933

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Ardouin CM, Brown RG et al (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(Pt 6):1142–1154

    Article  PubMed  Google Scholar 

  • Kuhn AA, Tsui A, Aziz T et al (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215:380–387. doi:10.1016/j.expneurol.2008.11.008

    Article  PubMed  Google Scholar 

  • Lee SS, Wild K, Hollnagel C, Grafman J (1999) Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease. Neuropsychologia 37:595–604

    Article  PubMed  CAS  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200

    Article  PubMed  CAS  Google Scholar 

  • Nigg JT (2000) On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull 126:220–246

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32:151–161. doi:10.1002/ana.410320206

    Article  PubMed  CAS  Google Scholar 

  • Praamstra P, Plat FM (2001) Failed suppression of direct visuomotor activation in Parkinson’s disease. J Cogn Neurosci 13:31–43

    Article  PubMed  CAS  Google Scholar 

  • Praamstra P, Stegeman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Evidence from movement-related potentials. Brain 121(Pt 1):167–177

    Article  PubMed  Google Scholar 

  • Ray NJ, Jenkinson N, Brittain J et al (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47:2828–2834. doi:10.1016/j.neuropsychologia.2009.06.011

    Article  PubMed  CAS  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Rieger M, Gauggel S (1999) Inhibitory after-effects in the stop-signal paradigm. Br J Psychol 90:509–518

    Article  Google Scholar 

  • Rieger M, Gauggel S, Burmeister K (2003) Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology 17:272–282

    Article  PubMed  Google Scholar 

  • Rivaud-Pechoux S, Vidailhet M, Brandel JP, Gaymard B (2007) Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain 130:256–264. doi:10.1093/brain/awl315

    Article  PubMed  CAS  Google Scholar 

  • Schroeder U, Kuehler A, Haslinger B et al (2002) Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Seiss E, Praamstra P (2004) The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson’s disease. Brain 127:330–339. doi:10.1093/brain/awh043

    Article  PubMed  Google Scholar 

  • Seiss E, Praamstra P (2006) Time-course of masked response priming and inhibition in Parkinson’s disease. Neuropsychologia 44:869–875

    Article  PubMed  Google Scholar 

  • Spatt J, Goldenberg G (1993) Components of random generation by normal subjects and patients with dysexecutive syndrome. Brain Cogn 23:231–242

    Article  PubMed  CAS  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  • Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, Jahanshahi M (2007) STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 27:1173–1184

    Article  PubMed  Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18:626–636

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009a) Automaticity of cognitive control: goal priming in response-inhibition paradigms. J Exp Psychol Learn Mem Cogn 35:1381–1388. doi:10.1037/a0016645

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009b) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35:835–854. doi:10.1037/a0012726

    Article  PubMed  Google Scholar 

  • Vila M, Levy R, Herrero MT et al (1997) Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17:765–773

    PubMed  CAS  Google Scholar 

  • Voon V, Fernagut PO, Wickens J et al (2009) Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol 8:1140–1149. doi:10.1016/S1474-4422(09)70287-X

    Article  PubMed  CAS  Google Scholar 

  • Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111

    Article  PubMed  CAS  Google Scholar 

  • Witt K, Pulkowski U, Herzog J, Lorenz D, Hamel W, Deuschl G, Krack P (2004) Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 61:697–700. doi:10.1001/archneur.61.5.697

    Article  PubMed  Google Scholar 

  • Wylie SA, Stout JC, Bashore TR (2005) Activation of conflicting responses in Parkinson’s disease: evidence for degrading and facilitating effects on response time. Neuropsychologia 43:1033–1043

    Article  PubMed  Google Scholar 

  • Wylie SA, van den Wildenberg WP, Ridderinkhof KR, Bashore TR, Powell VD, Manning CA, Wooten GF (2009a) The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia 47:145–157. doi:10.1016/j.neuropsychologia.2008.08.001

    Article  PubMed  CAS  Google Scholar 

  • Wylie SA, van den Wildenberg WP, Ridderinkhof KR, Bashore TR, Powell VD, Manning CA, Wooten GF (2009b) The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia 47:1844–1853. doi:10.1016/j.neuropsychologia.2009.02.025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants. This work was supported by a PhD studentship from Fundación Caja Madrid (IO), a Career Development Fellowship from the Parkinson’s disease Society (LW) and a Royal Society Travelling Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obeso, I., Wilkinson, L., Casabona, E. et al. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212, 371–384 (2011). https://doi.org/10.1007/s00221-011-2736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2736-6

Keywords

Navigation