Log in

In search of lost presynaptic inhibition

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the sha** of a higher coherence between the cortically programmed and the executed movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barthelemy D, Leblond H, Provencher J, Rossignol S (2006) Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J Neurophysiol 96:3273–3292

    Article  PubMed  Google Scholar 

  • Biella G, Sotgiu ML (1995) Evidence that inhibitory mechanisms mask inappropriate somatotopic connections in the spinal cord of normal rat. J Neurophysiol 74:495–505

    PubMed  CAS  Google Scholar 

  • Biella G, Riva L, Sotgiu ML (1997) Interaction between neurons in different laminae of the dorsal horn of the spinal cord. A correlation study in normal and neuropathic rats. Eur J Neurosci 9:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Bras H, Cavallari P, Jankowska E, McCrea D (1989) Comparison of effects of monoamines on transmission in spinal pathways from group I and II muscle afferents in the cat. Exp Brain Res 76:27–37

    Article  PubMed  CAS  Google Scholar 

  • Bras H, Jankowska E, Noga B, Skoog B (1990) Comparison of effects of various types of NA and 5-HT agonists on transmission from group II muscle afferents in the cat. Eur J Neurosci 2:1029–1039

    Article  PubMed  Google Scholar 

  • Burke RE, Rudomin P, Vyklicky L, Zajac FE III (1971) Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin. J Physiol 213:185–214

    PubMed  CAS  Google Scholar 

  • Castro AR, Pinto M, Lima D, Tavares I (2006) Secondary hyperalgesia in the monoarthritic rat is mediated by GABAB and NK1 receptors of spinal dorsal horn neurons: a behavior and c-fos study. Neurosc 141:2087–2095

    Article  CAS  Google Scholar 

  • Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68:13–23

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Laird JMA, García-Nicas E (2003) Secondary hyperalgesia and presynaptic inhibition: an update. Eur J Pain 7:345–351

    Article  PubMed  Google Scholar 

  • Cote MP, Gossard JP (2003) Task-dependent presynaptic inhibition. J Neurosci 23:1886–1893

    PubMed  CAS  Google Scholar 

  • Devor M (1983) Plasticity of spinal cord somatotopy in adult mammals: involvement of relatively ineffective synapses. Birth Defects 19:287–314

    PubMed  CAS  Google Scholar 

  • Dudel J, Kuffler SW (1961) Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol 155:543–562

    PubMed  CAS  Google Scholar 

  • Dueñas S, Rudomin P (1988) Excitability changes of ankle extensor group Ia and Ib fibers during fictive locmotion in the cat. Exp Brain Res 70:15–25

    PubMed  Google Scholar 

  • Eccles JC (1961) The Ferrier lecture. The nature of central inhibition. Proc R Soc 153:445–476

    Article  Google Scholar 

  • Eccles JC, Eccles RM, Magni F (1961) Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol 159:147–166

    PubMed  CAS  Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF (1962) Central pathways responsible for depolarization of primary afferent fibres. J Physiol 161:237–257

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963a) Pharmacological studies on the presynaptic inhibiiton. J Physiol 168:500–530

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963b) Depolarization of the central terminals of cutaneous afferent fibres. J Neurophysiol 26:646–661

    Google Scholar 

  • Eichler M, Dahlhaus R, Sandkuhler J (2003) Partial correlation analysis for the identification of synaptic connections. Biol Cybern 89:289–302

    Article  PubMed  Google Scholar 

  • Enríquez M, Jiménez I, Rudomin P (1996a) Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat. Exp Brain Res 107:391–404

    PubMed  Google Scholar 

  • Enríquez M, Jiménez I, Rudomin P (1996b) Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp Brain Res 107:405–420

    PubMed  Google Scholar 

  • Fitzgerald M, Wall PD, Goedert M, Emson PC (1985) Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res 332:131–141

    Article  PubMed  CAS  Google Scholar 

  • Frank K (1959) Basic mechanisms of synaptic transmission in the central nervous system. IRE Trans Med Electron ME 6:85–88

    Article  Google Scholar 

  • Frank K, Fourtes MGF (1957) Presynaptic and postsynaptic inhibition of monosynaptic reflex. Fed Proc 16:39–40

    Google Scholar 

  • Galhardo V, Apkarian AV, Lima D (2002) Peripheral inflammation increases the functional coherency of spinal responses to tactile but not nociceptive stimulation. J Neurophysiol 88:2096–2103

    PubMed  Google Scholar 

  • García C, Chávez D, Jiménez I, Rudomin P (2003) Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the lumbar spinal cord. Abs Soc Neurosci 479.7

  • García C, Chávez D, Jiménez I, Rudomin P (2004a) Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the cat lumbosacral spinal cord. Neurosci Lett 361:102–105

    Article  PubMed  CAS  Google Scholar 

  • García C, Chávez D, Jiménez I, Rudomin P (2004b) Characterization of dorsal horn neuronal ensembles generating different patterns of spontaneous cord dorsum potentials in the cat spinal cord Abstr Soc Neurosci 417.15

  • García C, Chávez D, Jiménez I, Rudomin P (2005) Presynaptic mechanisms are involved in the unmasking of cutaneous nerve responses in the cat spinal cord. Abstr Soc Neurosci 627.7

  • García C, Chávez D, Jiménez I, Rudomin P (2006) Changes in primary afferent depolarization during the unmasking of sural responses following acute section of cutaneous nerves in the anesthetized cat. Abstr Soc Neurosci 146.10

  • García C, Chávez D, Jiménez I, Rudomin P (2007) Resetting of tonic PAD by acute section of cutaneous nerves. Abstr Soc Neurosci 77.13

  • García C, Chávez D, Jiménez I, Rudomin P (2008) The unmasking phenomenon in chronically crushed cutaneous afferents: plasticity of PAD pathways. Abstr Soc Neurosci 73.14

  • Gaunt RA, Prochazka A, Mushahwar VK, Guevremont L, Ellaway PH (2006) Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. J Neurophysiol 96:2995–3005

    Article  PubMed  CAS  Google Scholar 

  • Gosgnach S, Quevedo J, Fedirchuk B, McCrea DA (2000) Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J Physiol 526:639–652

    PubMed  CAS  Google Scholar 

  • Granit R, Kellerth JO, Williams TD (1964) “Adjacent” and “remote” post-synaptic inhibition in motoneurones stimulated by muscle stretch. J Physiol 174:453–472

    PubMed  CAS  Google Scholar 

  • Hagbarth KE, Kerr DIB (1954) Central influences on spinal afferent conduction. J.Neurophysiol 17:295–307

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Jankowska E (1989) Primary afferent depolarization of central terminals of group II muscle afferents in the cat spinal cord. J Physiol 411:71–83

    PubMed  CAS  Google Scholar 

  • Heinemann U, Schaible HG, Schmidt RF (1990) Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs and inflamed knee joints. Exp Brain Res 79:283–292

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Peón R, Hagbarth KE (1955) Interaction between afferent and cortically induced reticular responses. J Neurophysiol 18:44–55

    PubMed  Google Scholar 

  • Horch KW, Lisney JW (1981) Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat. J Physiol 313:287–299

    PubMed  CAS  Google Scholar 

  • Howland J, Lettvin JT, McCulloch WS, Pitts W, Wall PD (1955) Reflex inhibition by dorsal root interaction. J Neurophysiol 18:1–17

    PubMed  CAS  Google Scholar 

  • Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533:5–13

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E (1987) Assessing changes in presynaptic inhibition of I a fibres: a study in man and the cat. J Physiol 389:729–756

    PubMed  CAS  Google Scholar 

  • Iles JF (1996) Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb. J Physiol 491:197–207

    PubMed  CAS  Google Scholar 

  • Janig W, Zimmermann M (1971) Presynaptic depolarization of myelinated afferent fibres evoked by stimulation of cutaneous C fibres. J Physiol 214:29–50

    PubMed  CAS  Google Scholar 

  • Jänig W, Schmidt RF, Zimmermann M (1967) Presynaptic depolarization during activation of tonic mechanoreceptors. Brain Res 5:514–516

    Article  PubMed  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, McCrea D, Rudomin P, Sykova E (1981) Observations on neuronal pathways subserving primary afferent depolarization. J Neurophysiol 46:506–516

    PubMed  CAS  Google Scholar 

  • Jankowska E, Riddell JS, McCrea DA (1993) Primary afferent depolarization of myelinated fibres in the joint and interosseous nerves of the cat. J Physiol 466:115–131

    PubMed  CAS  Google Scholar 

  • Jankowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. Eur J Neurosci 12:701–714

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Slawinska U, Hammar I (2002) Differential presynaptic inhibition of actions of group II afferents in di- and polysynaptic pathways to feline motoneurones. J Physiol 542:287–299

    Article  PubMed  CAS  Google Scholar 

  • Jiménez I, Rudomin P, Solodkin M, Vyklicky L (1984) Specific and nonspecific mechanisms involved in generation of pad of group Ia afferents in cat spinal cord. J Neurophysiol 52:921–940

    PubMed  Google Scholar 

  • Jiménez I, Rudomin P, Solodkin M (1987) Mechanisms involved in the depolarization of cutaneous afferents produced by segmental and descending inputs in the cat spinal cord. Exp Brain Res 69:195–207

    Article  PubMed  Google Scholar 

  • Jiménez I, Rudomin P, Solodkin M (1988) PAD patterns of physiologically identified afferent fibers from the medial gastrocnemius muscle. Exp Brain Res 71:643–657

    Article  PubMed  Google Scholar 

  • Kasprzak H, Gasteiger EL (1970) Spinal electrogram of freely moving cat:supraspinal and segmental influences. Brain Res 22:207–220

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Beggs S, Salter MW, De Koninck Y (2007) Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 3:27–38

    Article  PubMed  CAS  Google Scholar 

  • Knyihar E, Csillik B (1976) Effect of peripheral anatomy on the fine structure and histochemistry of the Rolando substance: degenerative atrophy of central processes of pseudounipolar cells. Exp Brain Res 26:73–87

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33–46

    Article  PubMed  CAS  Google Scholar 

  • Lemay MA, Grill WM (2004) Modularity of motor output evoked by intraspinal microstimulation in cats. J Neurophysiol 91:502–514

    Article  PubMed  Google Scholar 

  • Lidierth M, Wall PD (1998) Dorsal horn cells connected to the Lissauer tract and their relation to the dorsal root potential in the rat. J Neurophysiol 80:667–679

    PubMed  CAS  Google Scholar 

  • Lin Q, Zou X, Willis WD (2000) A delta and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 84:2695–2698

    PubMed  CAS  Google Scholar 

  • Lu Y, Perl ER (2005) Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 25:3900–3907

    Article  PubMed  CAS  Google Scholar 

  • Lucas ME, Willis WD (1974) Identification of muscle afferents which activate interneurons in the intermediate nucleus. J Neurophysiol 37:282–293

    PubMed  CAS  Google Scholar 

  • Manjarrez E, Rojas-Piloni JG, Jiménez I, Rudomin P (2000) Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat. J Physiol 529:445–460

    Article  PubMed  CAS  Google Scholar 

  • Manjarrez E, Jiménez I, Rudomin P (2003) Intersegmental synchronization of spontaneous activity of dorsal horn neurons in the cat spinal cord. Exp Brain Res 148:401–413

    PubMed  CAS  Google Scholar 

  • Menard A, Leblond H, Gossard JP (2002) Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. J Neurophysiol 88:163–171

    PubMed  Google Scholar 

  • Menard A, Leblond H, Gossard JP (2003) Modulation of monosynaptic transmission by presynaptic inhibition during fictive locomotion in the cat. Brain Res 964:67–82

    Article  PubMed  CAS  Google Scholar 

  • Mendell LM, Wall PD (1964) Presynaptic hyperpolarization: a role for fine afferent fibres. J Physiol 172:274–294

    PubMed  CAS  Google Scholar 

  • Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ (2002) Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22:6724–6731

    PubMed  CAS  Google Scholar 

  • Perreault MC, Shefchyk SJ, Jiménez I, McCrea DA (1999) Depression of muscle and cutaneous afferents-evoked monosynaptic field potentials during fictive locomotion in the cat. J Physiol 521:691–703

    Article  PubMed  CAS  Google Scholar 

  • Polgar E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ (2003) Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic contriction injury model of neuropathic pain. Pain 104:229–239

    Article  PubMed  CAS  Google Scholar 

  • Quevedo J, Eguibar JR, Lomelí J, Rudomin P (1997) Patterns of connectivity of spinal interneurons with single muscle afferents. Exp Brain Res 115:387–402

    Article  PubMed  CAS  Google Scholar 

  • Riddell JS, Jankowska E, Eide E (1993) Depolarization of group II muscle afferents by stimuli applied in the locus coeruleus and raphe nuclei of the cat. J Physiol 461:723–741

    PubMed  CAS  Google Scholar 

  • Rudomin P, Lomelí J (2007) Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat. Exp Brain Res 176:119–131

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Madrid J (1972) Changes in correlation between monosynaptic responses of single motoneurons and in information transmission produced by conditioning volleys to cutaneous nerves. J Neurophysiol 35:44–64

    PubMed  CAS  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Burke RE, Núñez R, Madrid J, Dutton H (1975) Control by presynaptic correlation: a mechanism affecting information transmission from Ia fibers to motoneurons. J Neurophysiol 38:267–284

    PubMed  CAS  Google Scholar 

  • Rudomin P, Jiménez I, Solodkin M, Dueñas S (1983) Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia- and Ib-afferent fibers in cat spinal cord. J Neurophysiol 50:743–769

    PubMed  CAS  Google Scholar 

  • Rudomin P, Solodkin M, Jiménez I (1987) Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. J Neurophysiol 57:1288–1313

    PubMed  CAS  Google Scholar 

  • Rudomin P, Jiménez I, Quevedo J, Solodkin M (1990) Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord. J Neurophysiol 63:147–160

    PubMed  CAS  Google Scholar 

  • Rudomin P, Lomelí J, Quevedo J (2004a) Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending collaterals of single group I muscle afferents in the cat spinal cord. Exp Brain Res 159:239–250

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Lomelí J, Quevedo J (2004b) Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Exp Brain Res 156:377–391

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Hernández E, Lomelí J (2007) Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat. Exp Brain Res 176:98–118

    Article  PubMed  CAS  Google Scholar 

  • Saltiel P, Tresch MC, Bizzi E (1998) Spinal cord modular organization and rhythm generation: an NMDA iontophoretic study in the frog. J Neurophysiol 80:2323–2339

    PubMed  CAS  Google Scholar 

  • Sandkuhler J (2000) Learning and memory in pain pathways. Pain 88:113–118

    Article  PubMed  CAS  Google Scholar 

  • Sandkuhler J, Eblen-Zajjur AA (1994) Identification and characterization of rhythmic nociceptive and non- nociceptive spinal dorsal horn neurons in the rat. Neuroscience 61:991–1006

    Article  PubMed  CAS  Google Scholar 

  • Sandkuhler J, Eblen-Zajjur A, Fu QG, Forster C (1995) Differential effects of spinalization on discharge patterns and discharge rates of simultaneously recorded nociceptive and non-nociceptive spinal dorsal horn neurons. Pain 60:55–65

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol 63:20–101

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF, Senges J, Zimmermann M (1967) Excitability measurements at the central terminals of single mechano-receptors afferents during slow potential changes. Exp Brain Res 3:220–233

    PubMed  CAS  Google Scholar 

  • Schouenborg J, Kalliomaki J (1990) Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb muscles in the rat. Exp Brain Res 83:67–78

    Article  PubMed  CAS  Google Scholar 

  • Schouenborg J, Holmberg H, Weng HR (1992) Functional organization of the nociceptive withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in the cat. Exp Brain Res 90:469–478

    Article  PubMed  CAS  Google Scholar 

  • Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Solodkin M, Jiménez I, Rudomin P (1984) Identification of common interneurons mediating pre- and postsynaptic inhibition in the cat spinal cord. Science 224:1453–1456

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Martin-Cora F, Leiras R, Velo P, Canedo A (2006) GABA(B) receptor-mediated modulation of cutaneous input at the cuneate nucleus in anesthetized cats. Neuroscience 137:1015–1030

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Johnson SW, North RA (1992) Synaptic inputs to GABAa and GABAb receptors originate from discrete afferent neurons. Neurosci Lett 134:207–211

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Mashimo T, Uchida I (2006) GABAergic tonic inhibition of substantia gelatinosa neurons in mouse spinal cord. NeuroReport 21:1331–1335

    Article  CAS  Google Scholar 

  • Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129:401–416

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible HG (2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Res Rev 46:295–309

    Article  PubMed  Google Scholar 

  • Wall PD (1994) Control of impulse conduction in long range branches of afferents by increases and decreases of primary afferent depolarization in the rat. Eur J Neurosci 6:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Wall PD, Bennett DL (1994) Postsynaptic effects of long-range afferents in distant segments caudal to their entry point in rat spinal cord under the influence of picrotoxin or strychnine. J Neurophysiol 72:2703–2713

    PubMed  CAS  Google Scholar 

  • Wall PD, Devor M (1984) The effects of peripheral nerve injury on dorsal root potentials. Brain Res 209:95–111

    Article  Google Scholar 

  • Wall PD, McMahon SB (1994) Long range afferents in rat spinal cord. III. Failure of impulse transmission in axons and relief of the failure after rhizotomy of dorsal roots. Philos Trans R Soc Lond B Biol Sci 343:211–223

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124:395–421

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (2002) Long-term potentiation in spinothalamic neurons. Brain Res Rev 40:202–214

    Article  PubMed  Google Scholar 

  • Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol (Oxf) 189:155–169

    Article  CAS  Google Scholar 

  • Yang CT, Choe J, Chiang F, García C, Cruz J, Chavez D, Wang L, Edgerton VR, Judy JW, Jimenez I, Rudomin P (2007) Polymide flat arrays for assessment of spinal cord function and recovery after spinal cord injury. Abst Soc Neurosci 801.6

  • Zytnicki D, Jami L (1998) Presynaptic inhibition can act as a filter of input from tendon organs during muscle contraction. In: Rudomin P, Romo R, Mendell L (eds) Presynaptic inhibition and neural control. Oxford University Press, Oxford, pp 303–314

Download references

Acknowledgments

I want to thank Dr. I. Jiménez, D. Chávez and C. García for allowing the use of the material illustrated in Figs. 1, 2, 3 and 4, to C. León for technical assistance and to E. Velázquez and P. Reyes for programming. This work was partly supported by NIH grant NS 09196 and by CONACyT grant 50900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Rudomin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudomin, P. In search of lost presynaptic inhibition. Exp Brain Res 196, 139–151 (2009). https://doi.org/10.1007/s00221-009-1758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1758-9

Keywords

Navigation