Log in

Robustness of Quantum Markov Chains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

If the conditional information of a classical probability distribution of three random variables is zero, then it obeys a Markov chain condition. If the conditional information is close to zero, then it is known that the distance (minimum relative entropy) of the distribution to the nearest Markov chain distribution is precisely the conditional information. We prove here that this simple situation does not obtain for quantum conditional information. We show that for tri-partite quantum states the quantum conditional information is always a lower bound for the minimum relative entropy distance to a quantum Markov chain state, but the distance can be much greater; indeed the two quantities can be of different asymptotic order and may even differ by a dimensional factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L. and Frigerio A. (1983). Markovian cocycles. Proc. Roy. Irish Acad. 83(2): 251–263

    MATH  MathSciNet  Google Scholar 

  2. Alicki R. and Fannes M. (2004). Continuity of quantum conditional information. J. Phys. A: Math. Gen. 37: L55–L57

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bennett C.H. and Wiesner S. (1992). Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69: 2881–2884

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A. and Wootters W.K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13): 1895–1899

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bennett C.H., Gács P., Li M., Vitányi P.M.B. and Zurek W.H. (1998). Information Distance. IEEE Trans. Inf. Theory 44(4): 1407–1423

    Article  MATH  Google Scholar 

  6. Choi M.-D. (1975). Completely positive linear maps on complex matrices. Linear Algebra and Appl. 10: 285–290

    Article  MATH  MathSciNet  Google Scholar 

  7. Christandl M. and Winter A. (2004). Squashed entanglement: An additive entanglement measure. J. Math. Phys. 45(3): 829–840

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Christandl M. and Winter A. (2005). Uncertainty, Monogamy and Locking of Quantum Correlations. IEEE Trans. Inf. Theory 51(9): 3159–3165

    Article  MathSciNet  Google Scholar 

  9. Cover T.M. and Thomas J.A. (1991). Elements of Information Theory. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  10. Davies E.B. (1978). Information and Quantum Measurement. IEEE Trans. Inf. Theory. 24: 596–599

    Article  MATH  Google Scholar 

  11. Fannes M. (1973). A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31: 291–294

    Article  ADS  MathSciNet  Google Scholar 

  12. Fuchs C.A. and van de Graaf J. (1999). Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4): 1216–1227

    Article  MATH  Google Scholar 

  13. Hayden P., Jozsa R., Petz D. and Winter A. (2004). Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246(2): 359–374

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Horodecki K., Horodecki M., Horodecki P. and Oppenheim J. (2005). Information Theories with Adversaries, Intrinsic Information, and Entanglement. Found. Physics 35(12): 2027–2040

    Article  MATH  MathSciNet  Google Scholar 

  15. Ibinson B., Linden N. and Winter A. (2007). All inequalities for the relative entropy. Commun. Math. Phys. 269(1): 223–238

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Ibinson, B., Linden, N., Winter, A.: in preparation, 2006

  17. Lieb E.H. and Ruskai M.B. (1973). Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14: 1938–1941

    Article  ADS  MathSciNet  Google Scholar 

  18. Linden N. and Winter A. (2005). A new inequality for the von Neumann entropy. Commun. Math. Phys. 259(1): 129–138

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Ohya M. and Petz D. (2004). Quantum Entropy and Its Use. 2nd edition. Springer Verlag, Berlin

    Google Scholar 

  20. Petz D. (1988). Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser. (2) 39(153): 97–108

    Article  MATH  MathSciNet  Google Scholar 

  21. Terhal B.M., Horodecki M., Leung D.W. and DiVincenzo D.P. (2002). The entanglement of purification. J. Math. Phys. 43(9): 4286–4298

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibinson, B., Linden, N. & Winter, A. Robustness of Quantum Markov Chains. Commun. Math. Phys. 277, 289–304 (2008). https://doi.org/10.1007/s00220-007-0362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0362-8

Keywords

Navigation