Log in

On the Absence of Ferromagnetism in Typical 2D Ferromagnets

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form. We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d ≥ 2) magnetic order can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanov Ar., Kalatsky V., Pokrovsky V.L. and Saslow W.M. (1995). Phase diagram of ultrathin ferromagnetic films with perpendicular anisotropy. Phys. Rev. B 51(2): 1023–1038

    Article  ADS  Google Scholar 

  2. Aizenman M., Chayes J.T., Chayes L. and Newman C.M. (1988). Discontinuity of the magnetization in one-dimensional \(1/\vert x-y\vert^2\) Ising and Potts modelsJ. Stat. Phys. 50(1-2): 1–40

    Article  MATH  MathSciNet  Google Scholar 

  3. Aizenman M. and Newman C. (1986). Discontinuity of the percolation density in one-dimensional \(1/|x-y|^2\) percolation modelsCommun. Math. Phys. 107(4): 611–647

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Anderson P.W., Yuval G. and Hamann D.R. (1970). Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B 1(1): 4464–4473

    Article  ADS  Google Scholar 

  5. Bak P. and Bruinsma R. (1982). One-dimensional Ising model and the complete devil’s staircase. Phys. Rev. Lett. 49(4): 249–251

    Article  ADS  MathSciNet  Google Scholar 

  6. Chayes L., Emery V.J., Kivelson S.A., Nussinov Z. and Tarjus G. (1996). Avoided critical behavior in a uniformly frustrated system. Physica A 225(1): 129–153

    Article  ADS  MathSciNet  Google Scholar 

  7. Daniëls H.A.M. and van Enter A.C.D. (1980). Differentiability properties of the pressure in lattice systems. Commun. Math. Phys. 71(1): 65–76

    Article  MATH  ADS  Google Scholar 

  8. van Enter A.C.D. (1981). A note on the stability of phase diagrams in lattice systems. Commun. Math. Phys. 79(1): 25–32

    Article  ADS  MathSciNet  Google Scholar 

  9. van Enter A.C.D. (1982). Instability of phase diagrams for a class of “irrelevant” perturbations. Phys. Rev. B 26(3): 1336–1339

    Article  ADS  MathSciNet  Google Scholar 

  10. Fogler M.M., Koulakov A.A. and Shklovskii B.I. (1996). Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54(3): 1853–1871

    Article  ADS  Google Scholar 

  11. Garel T. and Doniach S. (1982). Phase-transitions with spontaneous modulation: the dipolar ferromagnet. Phys. Rev. B 26(1): 325–329

    Article  ADS  Google Scholar 

  12. Ginibre J., Grossmann A. and Ruelle D. (1966). Condensation of lattice gases. Commun. Math. Phys. 3(3): 187–193

    Article  ADS  MathSciNet  Google Scholar 

  13. Giuliani A., Lebowitz J.L. and Lieb E.H. (2006). Ising models with long-range dipolar and short range ferromagnetic interactions. Phys. Rev. B 74(6): 064420

    Article  ADS  Google Scholar 

  14. Grousson M., Tarjus G. and Viot P. (2002). Evidence for “fragile” glass-forming behavior in the relaxation of Coulomb frustrated three-dimensional systems. Phys. Rev. E 65(6): 065103

    Article  ADS  Google Scholar 

  15. Huse, D.: private communication

  16. Israel R.B. (1986). Generic triviality of phase diagrams in spaces of long-range interactions. Commun. Math. Phys. 106(3): 459–466

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Jamei R., Kivelson S. and Spivak B. (2005). Universal aspects of Coulomb-frustrated phase separation. Phys. Rev. Lett. 94(5): 056805

    Article  ADS  Google Scholar 

  18. Kashuba A.B. and Pokrovsky V.L. (1993). Stripe domain structures in a thin ferromagnetic film. Phys. Rev. B 48(14): 10335–10344

    Article  ADS  Google Scholar 

  19. Koulakov A.A., Fogler M.M. and Shklovskii B.I. (1996). Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76(3): 499–502

    Article  ADS  Google Scholar 

  20. Lebowitz J.L. and Mazel A.E. (1998). Improved Peierls argument for high-dimensional Ising models. J. Statist. Phys. 90(3-4): 1051–1059

    MATH  MathSciNet  Google Scholar 

  21. Löw U., Emery V.J., Fabricius K. and Kivelson S.A. (1994). Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72(12): 1918–1921

    Article  ADS  Google Scholar 

  22. Ng K.-O. and Vanderbilt D. (1995). Stability of periodic domain structures in a two-dimensional dipolar model. Phys. Rev. B 52(3): 2177–2183

    Article  ADS  Google Scholar 

  23. Ortix C., Lorenzana J. and Di Castro C. (2006). Frustrated phase separation in two-dimensional charged systems. Phys. Rev. B 73(24): 245117

    Article  ADS  Google Scholar 

  24. Seul M. and Andelman D. (1995). Domain shapes and patterns: The phenomenology of modulated phases. Science 267(5197): 476–483

    Article  ADS  Google Scholar 

  25. Simon, B.: The Statistical Mechanics of Lattice Gases. Vol. I, Princeton Series in Physics, Princeton, NJ: Princeton University Press (1993)

    Google Scholar 

  26. Sokal A.D. (1982). More surprises in the general theory of lattice systems. Commun. Math. Phys. 86(3): 327–336

    Article  ADS  MathSciNet  Google Scholar 

  27. Spivak B. and Kivelson S. (2004). Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70(15): 155114

    Article  ADS  Google Scholar 

  28. Spivak B. and Kivelson S. (2006). Transport in two dimensional electronic micro-emulsions. Ann. Phys. 321(9): 2071–2115

    Article  MATH  ADS  Google Scholar 

  29. Thouless D.J. (1969). Critical region for the Ising model with a long-range interaction. Phys. Rev. 181(2): 954–968

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Biskup.

Additional information

Communicated by M. Aizenman

© 2007 by M. Biskup, L. Chayes and S.A. Kivelson. Reproduction, by any means, of the entire article for non-commercial purposes is permitted without charge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Chayes, L. & Kivelson, S.A. On the Absence of Ferromagnetism in Typical 2D Ferromagnets. Commun. Math. Phys. 274, 217–231 (2007). https://doi.org/10.1007/s00220-007-0260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0260-0

Keywords

Navigation