Log in

LC/MS-based metabolomics to evaluate the milk composition of human, horse, goat and cow from China

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Milk metabolites are associated with species of dairy animals and also affect the nutritional value of infant formulas. The objective of this study was to characterize the profile of milk metabolites between human milk and cow, horse, and goat milk, and identify any differences using non-targeted LC/MS metabolomic approaches, and analyze possible metabolic pathways. The results showed that 37 significantly different metabolites (P < 0.05 and VIP value > 1) were identified in the four milk samples. The metabolic pathways analysis revealed seven main metabolic pathways (P < 0.05 and pathway impact value > 0.1), including synthesis and degradation of ketone bodies, linoleic acid metabolism, arachidonic acid metabolism, pyruvate metabolism, inositol phosphate metabolism, alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. These metabolic pathways could provide the data for the metabolism of dairy products in vivo. A better understanding of milk metabolites from different dairy animals could provide a rich reference to evaluate milk properties, and improve the quality of formulas and develop formulas closer to human milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vitta BS, Benjamin M, Pries AM et al (2016) Infant and young child feeding practices among children under 2years of age and maternal exposure to infant and young child feeding messages and promotions in Dar es Salaam, Tanzania. Matern Child Nutr 122:77–90. https://doi.org/10.1111/mcn.12292

    Article  Google Scholar 

  2. Marincola FC, Noto A, Caboni P et al (2012) A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results. J Matern Fetal Neonatal Med 25:62–67. https://doi.org/10.3109/14767058.2012.715436

    Article  CAS  PubMed  Google Scholar 

  3. Cattaneo A, Yngve A, Koletzko B et al (2005) Protection, promotion and support of breast-feeding in Europe: current situation. Public Health Nutr 8:39–46. https://doi.org/10.1079/phn2005660

    Article  PubMed  Google Scholar 

  4. Institute IFP (2016) Global nutrition report 2016: from promise to impact: ending malnutrition by 2030. Ifpri Books 10:142–158

    Google Scholar 

  5. Qian L, Zhao A, Zhang Y et al (2016) Metabolomic approaches to explore chemical diversity of human breast-milk, formula milk and bovine milk. Int J Mol Sci 17:146–168. https://doi.org/10.3390/ijms17122128

    Article  CAS  Google Scholar 

  6. Shetty SA, Young MF, Taneja S et al (2020) Quantification of B-vitamins from different fresh milk samples using ultra-high performance liquid chromatography mass spectrometry/selected reaction monitoring methods. J Chromatogr a 1609:460452. https://doi.org/10.1016/j.chroma.2019.460452

    Article  CAS  PubMed  Google Scholar 

  7. El-Hatmi HE (2015) Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 65:159–167. https://doi.org/10.15567/mljekarstvo.2015.0302

    Article  Google Scholar 

  8. **a Y, Yu J, Miao W et al (2020) A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss. Food Chem 320:126619. https://doi.org/10.1016/j.foodchem.2020.126619

    Article  CAS  PubMed  Google Scholar 

  9. Caboni P, Murgia A, Porcu A et al (2019) A metabolomics comparison between sheep’s and goat’s milk. Food Res Int 119:869–875. https://doi.org/10.1016/j.foodres.2018.10.071

    Article  CAS  PubMed  Google Scholar 

  10. Scano P, Murgia A, Pirisi FM et al (2014) A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk. J Dairy Sci 97:6057–6066. https://doi.org/10.3168/jds.2014-8247

    Article  CAS  PubMed  Google Scholar 

  11. Sundekilde UK, Poulsen NA, Larsen LB et al (2013) Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J Dairy Sci 96:290–299. https://doi.org/10.3168/jds.2012-5819

    Article  CAS  PubMed  Google Scholar 

  12. Lao YM, Jiang JG, Yan L (2009) Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine. Br J Pharmacol 157:1128–1141. https://doi.org/10.1111/j.1476-5381.2009.00257.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056. https://doi.org/10.1038/4551054a

    Article  CAS  PubMed  Google Scholar 

  14. Lu J, Antunes FE, Paez CA et al (2013) Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. J Proteome Res 12:3288–3296. https://doi.org/10.1021/pr4001306

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, Zhang Y, Song B et al (2020) Comparative analysis of oligosaccharides in Guanzhong and Saanen goat milk by using LC-MS/MS. Carbohyd Polym 235:123–135. https://doi.org/10.1016/j.carbpol.2020.115965

    Article  CAS  Google Scholar 

  16. Jia W, Dong X, Shi L et al (2020) Discrimination of milk from different animal species by a foodomics approach based on high-resolution mass spectrometry. J Agric Food Chem 68:6638–6645. https://doi.org/10.1021/acs.jafc.0c02222

    Article  CAS  PubMed  Google Scholar 

  17. Pratico G, Capuani G, Tomassini A et al (2014) Exploring human breast milk composition by NMR-based metabolomics. Nat Prod Res 28:95–101. https://doi.org/10.1080/14786419.2013.843180

    Article  CAS  PubMed  Google Scholar 

  18. Clark S, Mora GM (2017) A 100-Year Review: Advances in goat milk research. J Dairy Sci 100:10026–10044. https://doi.org/10.3168/jds.2017-13287

    Article  CAS  PubMed  Google Scholar 

  19. Souza SL, Graca G, Oliva A (2018) Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res Technol 24:187–195. https://doi.org/10.1111/srt.12412

    Article  CAS  PubMed  Google Scholar 

  20. Tang D, Dong Y, Guo N et al (2014) Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts. J Sci Food Agric 94:1639–1647. https://doi.org/10.1002/jsfa.6471

    Article  CAS  PubMed  Google Scholar 

  21. Zhao S, Zhao J, Bu D et al (2014) Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Lett Appl Microbiol 59:79–85. https://doi.org/10.1111/lam.12247

    Article  CAS  PubMed  Google Scholar 

  22. Gartner LM, Morton J, Lawrence RA et al (2005) Breastfeeding and the use of human milk. Pediatrics 115:496–506. https://doi.org/10.1542/peds.2004-2491

    Article  PubMed  Google Scholar 

  23. Zivkovic AM, Barile D (2011) Bovine milk as a source of functional oligosaccharides for improving human health. Adv Nutr 2:284–289. https://doi.org/10.3945/an.111.000455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein MS, Almstetter MF, Schlamberger G et al (2010) Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J Dairy Sci 93:1539–1550. https://doi.org/10.3168/jds.2009-2563

    Article  CAS  PubMed  Google Scholar 

  25. Svahn J, Feldl F, Raiha N et al (2002) Different quantities and quality of fat in milk products given to young children: effects on long chain polyunsaturated fatty acids and trans fatty acids in plasma. Acta Paediatr 91:20–29. https://doi.org/10.1080/080352502753457897

    Article  CAS  PubMed  Google Scholar 

  26. Agostoni C (2008) Role of long-chain polyunsaturated fatty acids in the first year of life. J Pediatr Gastr Nutr 472:S41–S44. https://doi.org/10.1097/01.mpg.0000338811.52062.b2

    Article  CAS  Google Scholar 

  27. Yang T, Zhang L, Bao W et al (2018) Nutritional composition of breast milk in Chinese women: a systematic review. Asia Pac J Clin Nutr 27:491–502. https://doi.org/10.6133/apjcn.042017.13

    Article  CAS  PubMed  Google Scholar 

  28. Malacarne M, Martuzzi F, Summer A et al (2002) Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int Dairy J 12:869–877. https://doi.org/10.1016/S0958-6946(02)00120-6

    Article  CAS  Google Scholar 

  29. Silanikove N, Leitner G, Merin U et al (2010) Recent advances in exploiting goat’s milk: quality, safety and production aspects. Small Ruminant Res 89:110–124. https://doi.org/10.1016/j.smallrumres.2009.12.033

    Article  Google Scholar 

  30. El-Hatmi H, Jrad Z, Salhi I et al (2015) Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 65:159–167. https://doi.org/10.15567/mljekarstvo.2015.0302

    Article  Google Scholar 

  31. Ferreira IM (2003) Quantification of non-protein nitrogen components of infant formulae and follow-up milks: comparison with cows’ and human milk. Br J Nutr 90:127–133. https://doi.org/10.1079/bjn2003882

    Article  CAS  PubMed  Google Scholar 

  32. Lei J, Feng D, Zhang Y et al (2012) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci (Landmark Ed) 17:2725–2739. https://doi.org/10.2741/4082

    Article  CAS  Google Scholar 

  33. Pelizzola V, Contarini G, Povolo M et al (2006) Chemical-physical characteristics and fatty acid composition of mare’s milk. MILCHWISSENSCHAFT-MILK SCIENCE INTERNATIONAL 61:33–36

    CAS  Google Scholar 

  34. Potocnik K, Gantner V, Kuterovac K et al (2011) Mare’s milk: composition and protein fraction in comparison with different milk species. Mljekarstvo 61:107–113

    CAS  Google Scholar 

  35. Gay M, Koleva PT, Slupsky CM et al (2018) Worldwide variation in human milk metabolome: indicators of breast physiology and maternal lifestyle? Nutrients 10:56–68. https://doi.org/10.3390/nu10091151

    Article  CAS  Google Scholar 

  36. Oliveira DL, Wilbey RA, Grandison AS et al (2015) Milk oligosaccharides: a review. Int J Dairy Technol 68:305–321. https://doi.org/10.1111/1471-0307.12209

    Article  CAS  Google Scholar 

  37. Saleem F, Ametaj BN, Bouatra S et al (2012) A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci 95:6606–6623. https://doi.org/10.3168/jds.2012-5403

    Article  CAS  PubMed  Google Scholar 

  38. Liu SQ (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 83:115–131. https://doi.org/10.1016/S0168-1605(02)00366-5

    Article  CAS  PubMed  Google Scholar 

  39. Grelet C, Bastin C, Gele M et al (2016) Development of Fourier transform mid-infrared calibrations to predict acetone, beta-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J Dairy Sci 99:4816–4825. https://doi.org/10.3168/jds.2015-10477

    Article  CAS  PubMed  Google Scholar 

  40. Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S-1840S

    Article  CAS  Google Scholar 

  41. Naert L, Vande Vyvere B, Verhoeven G et al (2013) Assessing heterogeneity of the composition of mare’s milk in Flanders. Vlaams Diergen Tijds 82:23–30

    Article  Google Scholar 

  42. Minjigdorj N, Haug A, Austbo D (2012) Fatty acid composition of Mongolian mare milk. Acta Agr Scand A-An 62:73–80. https://doi.org/10.1080/09064702.2012.721000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Jiuling Wei of Bei**g Institute of Nutritional Resources, and Jun Guo of Inner Mongolia Agricultural University for their contributions to the sample collection process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angnan Ren.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix A. Supplementary data: Supplementary data to this article could be found in Supplementary Table 1.

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Chen, J., Zhang, L. et al. LC/MS-based metabolomics to evaluate the milk composition of human, horse, goat and cow from China. Eur Food Res Technol 247, 663–675 (2021). https://doi.org/10.1007/s00217-020-03654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03654-1

Keywords

Navigation