Log in

Antioxidant peptides isolated from sea cucumber Stichopus Japonicus

  • Original paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The sea cucumber Stichopus japonicus protein was hydrolyzed by pepsin, trypsin, papain, acid protease and neutral protease, respectively, to get five kinds of peptide fractions: pepsin peptides (PP), trypsin peptides (TP), acid protease peptides (AP), neutral protease peptides (NP) and papain peptide (PAP). Antioxidative activities of all peptide fractions were evaluated by hydroxyl radical– (·OH) and Superoxide anion (O · −2 )–scavenging activity. Trypsin peptide (TP) exhibited the highest antioxidative activity compared to other peptide fractions. In considering scavenging effects on hydroxyl radicals (·OH) and Superoxide anions (O · −2 ), TP was employed for isolation, purification and identification of antioxidant peptide. To purify and characterize antioxidative peptide, two steps gel filtration, one-step ion-exchange column chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) were used. The purified antioxidative peptide TP2b-1 was a novel peptide and was sequenced as GPEPTGPTGAPQWLR, in which the low molecular weight and some amino acid constituents played important role in the radical-scavenging effects according reports. The IC50 values of TP2b-1 were 138.9 μM on ·OH and 353.9 μM on O · −2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  2. Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  3. Miller DM, Buettner GR, Aust SD (1990) Free Radic Biol Med 8:95–108

    Article  CAS  Google Scholar 

  4. Cadenas E, Sies H (1998) Free Radic Res 28:601–609

    Article  CAS  Google Scholar 

  5. Kovacic P, Pozos RS, Somanathan R, Shangari N, OBrien PJ (2005) Curr Med Chem 12:2601–2623

    Article  CAS  Google Scholar 

  6. Beckman KB, Ames BN (1998) Physiol Rev 78:547–581

    CAS  Google Scholar 

  7. Pike J, Chandra RK (1995) Int J Vitam Nutr Res 65:117–120

    CAS  Google Scholar 

  8. Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M (1986) Food Chem Toxicol 24:1071–1082

    Article  CAS  Google Scholar 

  9. Hernandez-Ledesma B, Amigo L, Ramos M, Recio IJ (2004) Chromatogr A 1049:107–114

    CAS  Google Scholar 

  10. Zhu LJ, Chen J, Tang X, **ong YL (2008) J Agric Food Chem 56:2714–2721

    Article  CAS  Google Scholar 

  11. Qian ZJ, Jung WK, Byun HG, Kim SK (2008) Bioresour Technol 99:3365–3371

    Article  CAS  Google Scholar 

  12. Jung WK, Qian ZJ, Lee SH, Choi SY, Sung NJ, Byun HG et al (2007) J Med Food 10:197–202

    Article  CAS  Google Scholar 

  13. Saito M, Kunisaki N, Urano N (2002) Food Sci 67:1319–1322

    Article  CAS  Google Scholar 

  14. Rafiuddin AM, Venkateshwarlu U, Jayakumar R (2004) Biomater 25:2585–2594

    Article  Google Scholar 

  15. Kim SK, Byun HG, Lee EH (1994) J. Korean Ind Eng Chem 5:547–559

    CAS  Google Scholar 

  16. Toraño JS, Verbon A, Guchelaar HJ (1999) J Chromatogr B 734:203–210

    Article  Google Scholar 

  17. Guo ZY, Liu HY, Chen XL, Ji X, Li PC (2006) Bioorg Med Chem Lett 16:6348–6350

    Article  CAS  Google Scholar 

  18. Nagai T, Inoue R, Inoue H, Suzuki N (2002) Nutr Res 22:519–526

    Article  CAS  Google Scholar 

  19. Aurand LW, Boonme NH, Gidding GG (1977) J Dairy Sci 60:363–369

    Article  CAS  Google Scholar 

  20. Chen HM, Muramoto K, Yamauchi F (1995) J Agric Food Chem 43:574–578

    Article  CAS  Google Scholar 

  21. Ranathunga S, Rajapakse N, Eur KimSK (2006) Food Res Technol 222:310–315

    Article  CAS  Google Scholar 

  22. Jeon Y, Byun H, Kim S (1999) Process Biochem 35:471–478

    Article  Google Scholar 

  23. Wu HC, Chen HM, Shiau CY (2003) Food Res Int 36:949–957

    Article  CAS  Google Scholar 

  24. Li B, Chen F, Wang X, Ji BP, Wu Y (2007) Food Chem 102:1135–1143

    Article  CAS  Google Scholar 

  25. Chang HC, Chen LY, Lu YH, Li MY, Chen YH, Lin CH et al (2007) Biophys J 93:3977–3988

    Article  CAS  Google Scholar 

  26. Dávalos A, Miguel M, Bartolomé B, López-Fandiño R (2004) J Food Protect 67:1939–1944

    Google Scholar 

  27. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK (2005) Food Res Int 38:175–182

    Article  CAS  Google Scholar 

  28. Alemán A, Giménez B, Pérez-Santín E, Gómez-Guillén MC, Montero P (2011) Food Chem 125:334–341

    Article  Google Scholar 

  29. Kim SK, Kim YT, Byun HG, Nam KS, Joo DS et al (2001) J Agric Food Chem 49:1984–1989

    Article  CAS  Google Scholar 

  30. Mendis E, Rajapakse N, Byun H, Kim S (2005) Life Sci 77:2166–2178

    Article  CAS  Google Scholar 

  31. Rajapakse N, Mendis E, Byun HG, Kim SK (2005) J Nutr Biochem 16:562–569

    Article  CAS  Google Scholar 

  32. Mendis E, Rajapakse N, Kim SK (2005) J Agric Food Chem 53:581–587

    Article  CAS  Google Scholar 

  33. Ngoa DH, Qianb ZJ, Ryua BM, Parkc JW, Kim SK (2010) J Func Food 2:107–117

    Article  Google Scholar 

  34. Suetsuna K, Ukeda H, Ochi H (2000) J Nutr Biochem 11:128–131

    Article  CAS  Google Scholar 

  35. Byun HG, Lee JK, Park HG, Jeon JK, Kim SK (2009) Process Biochem 44:842–846

    Article  CAS  Google Scholar 

  36. Klompong V, Benjakul S, Kantachote D, Shahidi F (2007) Food Chem 102:1317–1327

    Article  CAS  Google Scholar 

  37. Gbogouri GA, Linder M, Fanni J, Parmentier M (2004) J Food Sci 69:615–622

    Article  Google Scholar 

  38. Udenigwe CC, Aluko RE (2011) Int J Mol Sci 12:3148–3161

    Article  CAS  Google Scholar 

  39. Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) J Agric Food Chem 44:2619–2623

    Article  Google Scholar 

  40. Pihlanto-Leppala A (2001) Trends Food Sci Tech 11:347–356

    Article  Google Scholar 

  41. Roberts PR, Burney JD, Black KW, Zaloga GP (1999) Digestion 60:332–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shandong provincial government 908 special (SD-908-02-09) and Shandong science and technology office project (Y2007D59).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Wang, C. & Jiang, A. Antioxidant peptides isolated from sea cucumber Stichopus Japonicus . Eur Food Res Technol 234, 441–447 (2012). https://doi.org/10.1007/s00217-011-1610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1610-x

Keywords

Navigation