Log in

Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effect of high-intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1,700 μs in bipolar 4-μs pulses at 100 Hz) on individual phenolic compounds (phenolic acids and flavonoids), vitamin C and antioxidant capacity of strawberry juice was evaluated and compared to heat (90 °C for 60 or 30 s) and fresh juice as a reference. Although strawberry juice underwent a substantial depletion of health-related compounds with storage time irrespective of the treatment conducted, ellagic acid was enhanced. HIPEF-treated strawberry juice maintained higher amounts of phenolic acids (ellagic and p-coumaric acid) and total anthocyanins than the thermally treated juices during the storage period. Regarding the antioxidant capacity, similar DPPH and ABTS values were obtained so that differences among pasteurized juices were non significant. HIPEF processing may be a technology as effective as thermal treatments not only to achieve safe and stable juices, but also to obtain juices with a high content of antioxidant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eberhardt MV, Lee CY, Liu RH (2000) Nature 405(6789):903–904

    CAS  Google Scholar 

  2. Omaye ST, Zhang P (1998) Phytochemical interactions: β-carotene, tocopherol and ascorbic acid. In: Bidlack WR, Omaye ST, Meskin MS, Jahner D (eds) Phytochemicals, a new paradigm, Technomic Lancaster, pp 53–75

  3. Parr AJ, Bolwell GP (2000) J Sci Food Agric 80:985–1012

    Article  CAS  Google Scholar 

  4. Olsson ME, Ekvall J, Gustavsson KE, Nilsson J, Pillai D, Sjöholm I, Svensson U, Åkesson B, Nyman MGL (2004) J Agric Food Chem 52:2490–2498

    Article  CAS  Google Scholar 

  5. Braddock RJ (1999) Handbook of citrus by-products and processing technology. Wiley, New York

    Google Scholar 

  6. Deliza R, Rosenthal A, Silva ALS (2003) Trends Food Sci Techol 14(1–2):43–49

    Article  CAS  Google Scholar 

  7. Elez-Martínez P, Soliva-Fortuny RC, Martín-Belloso O (2006) Eur Food Res Technol 222:321–329

    Article  CAS  Google Scholar 

  8. Marsellés-Fontanet AR, Martín-Belloso O (2007) J Food Eng 83:452–462

    Article  CAS  Google Scholar 

  9. Elez-Martínez P, Escolà-Hernández J, Soliva-Fortuny RC, Martín-Belloso O (2004) J Food Protect 67:2596–2602

    Google Scholar 

  10. Aguiló-Aguayo I, Odriozola-Serrano I, Quintão-Teixeira LJ, Martín-Belloso O (2008) Food Chem 107:949–955

    Article  CAS  Google Scholar 

  11. Torregrosa F, Esteve MJ, Frígola A, Cortés C (2006) J Food Eng 73:339–345

    Article  CAS  Google Scholar 

  12. Elez-Martínez P, Martín-Belloso O (2007) Food Chem 102(1):201–209

    Article  CAS  Google Scholar 

  13. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Innov Food Sci Emerg Technol 9:272–279

    Article  CAS  Google Scholar 

  14. Mosqueda-Melgar J, Raybaudi RM, Martín-Belloso O (2008) Innov Food Sci Emerg Technol 1:328–340

    Article  CAS  Google Scholar 

  15. Nagy S, Chen CS, Shaw PE (1993) Fruit juice processing technology. Agscience, Auburndale

    Google Scholar 

  16. Hertog M, Hollman P, Venema D (1992) J Agric Food Chem 40:1591–1598

    Article  CAS  Google Scholar 

  17. Gómez-Plaza E, Gil-Muñoz R, Hernández-Jiménez A, López-Roca JM, Ortega-Regules A, Martínez-Cutillas A (2008) Eur Food Res Technol 227:479–484

    Article  CAS  Google Scholar 

  18. Odriozola-Serrano I, Hernández-Jover T, Martín-Belloso O (2007) Food Chem 105:1151–1158

    Article  CAS  Google Scholar 

  19. Re R, Pellegrin N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  20. Hernanz D, Recamales AF, Meléndez-Martínez AJ, González-Miret ML, Heredia FJ (2007) J Agric Food Chem 55:1846–1852

    Article  CAS  Google Scholar 

  21. Allende A, Marín A, Buendía B, Tomás-Barberán F, Gil MI (2007) Postharv Biol Technol 46:201–211

    Article  CAS  Google Scholar 

  22. Häkkinen SH, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Food Res Intern 32:345–353

    Article  Google Scholar 

  23. Macheix JJ, Fleuriet A, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton

    Google Scholar 

  24. Brouillard R (1982) Chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as food colors food science and technology. Academic Press, London, pp 1–40

    Google Scholar 

  25. Jackman RL, Smith JL (1997) Anthocyanins and betalains natural food colorants. In: Hendry GAF, Houghton JD (eds) Natural food colorants, blackie academic & professional. Chapman & Hall, London, pp 244–309

    Google Scholar 

  26. Dangles O, Brouillard R (1992) J Chem Soc Perkin Trans 2:247–257

    Google Scholar 

  27. Sadilova E, Carle R, Stintzing FC (2007) Mol Nutr Food Res 51:1461–1471

    Article  CAS  Google Scholar 

  28. Zhang Y, Liao XJ, Ni YY, Wu JH, Hu XS, Wang ZF, Chen F (2007) Eur Food Res Technol 224:597–603

    Article  CAS  Google Scholar 

  29. Rein MJ, Heinonen M (2004) J Agric Food Chem 52:3106–3114

    Article  CAS  Google Scholar 

  30. Aguiló-Aguayo I, Sobrino-López A, Soliva-Fortuny R, Martín-Belloso O (2008) Innov Food Sci Emerg Technol. doi:10.1016/j.ifset.2007.12.007

  31. Orruño E, Apenten RO, Zabetakis I (2001) Flavour Fragrance J 16:81–84

    Article  Google Scholar 

  32. Kosar M, Kafkas E, Paydas S, Baser KH (2004) J Agric Food Chem 52:1586–1589

    Article  CAS  Google Scholar 

  33. Klopotek Y, Otto K, Böhn V (2005) J Agric Food Chem 53:5640–5646

    Article  CAS  Google Scholar 

  34. Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  35. FDA (1999) Nutritional labelling manual: a guide for develo** and using databases. Center for Food Safety and Applied Nutrition, Washington, DC

  36. Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M (2000) J Am Coll of Nutr 19:312S–319S

    CAS  Google Scholar 

  37. Plaza L, Sánchez-Moreno C, Elez-Martínez P, de Ancos B, Martín-Belloso O, Cano MP (2006) Eur Food Res Technol 223:487–493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been carried out with financial support from the Commission of the European Communities, Framework 6, Priority 5 ‘Food Quality and Safety’, Integrated Project NovelQ FP6-CT-2006-015710. This work was also supported by the Interministerial Commission for Science and Technology (CICYT) of the Ministerio de Educación y Ciencia (Spain) through the Project ALI 2005-05768. Isabel Odriozola-Serrano thanks the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya (Spain) and the European Social Fund for the predoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odriozola-Serrano, I., Soliva-Fortuny, R. & Martín-Belloso, O. Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol 228, 239–248 (2008). https://doi.org/10.1007/s00217-008-0928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0928-5

Keywords

Navigation