Log in

Development of an antibody-free ID-LC MS method for the quantification of procalcitonin in human serum at sub-microgram per liter level using a peptide-based calibration

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The quantification of low abundant proteins in complex matrices by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains challenging. A measurement procedure based on optimized antibody-free sample preparation and isotope dilution coupled to LC-MS/MS was developed to quantify procalcitonin (PCT) in human serum at sub-microgram per liter level. A combination of sodium deoxycholate-assisted protein precipitation with acetonitrile, solid-phase extraction, and trypsin digestion assisted with Tween-20 enhanced the method sensitivity. Linearity was established through peptide-based calibration curves in the serum matrix (0.092–5.222 μg/L of PCT) with a good linear fit (R2 ≥ 0.999). Quality control materials spiked with known amounts of protein-based standards were used to evaluate the method’s accuracy. The bias ranged from −2.6 to +4.3%, and the intra-day and inter-day coefficients of variations (CVs) were below 2.2% for peptide-based quality controls. A well-characterized correction factor was determined and applied to compensate for digestion incompleteness and material loss before the internal standards spike. Results with metrological traceability to the SI units were established using standard peptide of well-characterized purity determined by peptide impurity corrected amino acid analysis. The validated method enables accurate quantification of PCT in human serum at a limit of quantification down to 0.245 μg/L (bias −1.9%, precision 9.1%). The method was successfully applied to serum samples obtained from patients with sepsis. Interestingly, the PCT concentration reported implementing the isotope dilution LC-MS/MS method was twofold lower than the concentration provided by an immunoassay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable

Abbreviations

AAA:

Amino acid analysis

ACN:

Acetonitrile

CRM:

Certified reference material

CV:

Coefficient of variation

DMSO:

Dimethyl sulfoxide

ID-LC-MS/MS:

Isotope dilution liquid chromatography tandem mass spectrometry

HLB:

Hydrophilic-lipophilic balance

HRMS:

High-resolution mass spectrometry

LOQ:

Limit of quantification

PCT:

Procalcitonin

PICAA:

Peptide impurity corrected amino acid strategy

PRM:

Parallel reaction monitoring

QC:

Quality control

SDC:

Sodium deoxycholate

SIL:

Stable isotope labeled

SPE:

Solid-phase extraction

References

  1. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13:942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Watts R. Trends and outlook for clinical diagnostics testing. https://sciex.com/Documents/brochures/clinical_diagnostics_trends2015.pdf. Accessed on 04/12/2020.

  3. Antonelli G, Marinova M, Artusi C, Plebani M. Mass spectrometry or immunoassay: est modus in rebus. Clin Chem Lab Med. 2017;55:1243–5.

    Article  CAS  PubMed  Google Scholar 

  4. van den Ouweland JMW, Kema IP. The role of liquid chromatography–tandem mass spectrometry in the clinical laboratory. J Chromatogr B. 2012;883–884:18–32.

    Article  CAS  Google Scholar 

  5. Marinova M, Artusi C, Brugnolo L, Antonelli G, Zaninotto M, Plebani M. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples. Clin Biochem. 2013;46:1723–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hortin GL, Sviridov D. The dynamic range problem in the analysis of the plasma proteome. J Proteome. 2010;73:629–36.

    Article  CAS  Google Scholar 

  7. Neubert H, Shuford CM, Olah TV, Garofolo F, Schultz GA, Jones BR, et al. Protein biomarker quantification by immunoaffinity liquid chromatography–tandem mass spectrometry: current state and future vision. Clin Chem. 2020;66:282–301.

    Article  PubMed  Google Scholar 

  8. Szapacs ME, Urbanski JJ, Kehler JR, Wilson R, Boram SL, Hottenstein CS, et al. Absolute quantification of a therapeutic domain antibody using ultra-performance liquid chromatography-mass spectrometry and immunoassay. Bioanalysis. 2010;2:1597–608.

    Article  CAS  PubMed  Google Scholar 

  9. Bronsema KJ, Bischoff R, van de Merbel NC. High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Anal Chem. 2013;85:9528–35.

    Article  CAS  PubMed  Google Scholar 

  10. Bailly-Chouriberry L, Cormant F, Garcia P, Kind A, Popot M-A, Bonnaire Y. Identification of α-cobratoxin in equine plasma by LC-MS/MS for do** control. Anal Chem. 2013;85:5219–25.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, **ao Q, **n B, Trigona W, Tymiak AA, Dongre AR, et al. Development of a highly sensitive liquid chromatography/tandem mass spectrometry method to quantify total and free levels of a target protein, interferon-gamma-inducible protein-10, at picomolar levels in human serum. Rapid Commun Mass Spectrom. 2014;28:1535–43.

    Article  CAS  PubMed  Google Scholar 

  12. Klont F, Joosten MR, Ten Hacken NHT, Horvatovich P, Bischoff R. Quantification of the soluble receptor of advanced glycation end-products (sRAGE) by LC-MS after enrichment by strong cation exchange (SCX) solid-phase extraction (SPE) at the protein level. Anal Chim Acta. 2018;1043:45–51.

    Article  CAS  PubMed  Google Scholar 

  13. Valdés A, Lewitt M, Wiss E, Ramström M, Strage EM. Development of a parallel reaction monitoring-MS method to quantify IGF proteins in dogs and a case of nonislet cell tumor hypoglycemia. J Proteome Res. 2019;18:18–29.

    Article  PubMed  CAS  Google Scholar 

  14. Torma AF, Groves K, Biesenbruch S, Mussell C, Reid A, Ellison S, et al. A candidate liquid chromatography mass spectrometry reference method for the quantification of the cardiac marker 1-32 B-type natriuretic peptide. Clin Chem Lab Med. 2017;55:1397–406.

    Article  CAS  PubMed  Google Scholar 

  15. Owusu BY, Pflaum H, Garner R, Foulon N, Laha TJ, Hoofnagle AN. Development and validation of a novel LC-MS/MS assay for C-peptide in human serum. J Mass Spectrom Adv Clin Lab. 2021;19:1–6.

    Article  PubMed  Google Scholar 

  16. Oberhoffer M, Stonans I, Russwurm S, Stonane E, Vogelsang H, Junker U, et al. Procalcitonin expression in human peripheral blood mononuclear cells and its modulation by lipopolysaccharides and sepsis-related cytokines in vitro. J Lab Clin Med. 1999;134:49–55.

    Article  CAS  PubMed  Google Scholar 

  17. Vijayan AL, Vanimaya, Ravindran S, Saikant R, Lakshmi S, Kartik R, et al. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care. 2017;5:51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Müller B, Becker KL. Procalcitonin: how a hormone became a marker and mediator of sepsis. Swiss Med Wkly. 2001;131:595–602.

    PubMed  Google Scholar 

  19. Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med. 2017;15:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schuetz P, Beishuizen A, Broyles M, Ferrer R, Gavazzi G, Gluck EH, et al. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med. 2019;57:1308–18.

    Article  CAS  PubMed  Google Scholar 

  21. Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med. 2011;9:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krastins B, Prakash A, Sarracino DA, Nedelkov D, Niederkofler EE, Kiernan UA, et al. Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem. 2013;46:399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubois C. Confirmation de biomarqueurs pour le pronostic du sepsis et développement de tests rapides. Doctoral Thesis: Université Paris-Saclay; 2019.

    Google Scholar 

  24. Josephs RD, Martos G, Li M, Wu L, Melanson JE, Quaglia M, et al. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment—a review. Metrologia. 2019;56:044006.

    Article  CAS  Google Scholar 

  25. EMA. ICH guideline M10 on bioanalytical method validation. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b_en.pdf. Accessed on 10/17/2020.

  26. FDA. Bioanalytical Method Validation Guidance for Industry. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed on 01/10/2020.

  27. Siepen JA, Keevil E-J, Knight D, Hubbard SJ. Prediction of missed cleavage sites in rryptic peptides aids protein identification in proteomics. J Proteome Res. 2007;6:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawless C, Hubbard SJ. Prediction of missed proteolytic cleavages for the selection of surrogate peptides for quantitative proteomics. J Integr Biol. 2012;16:449–56.

    CAS  Google Scholar 

  29. Hoofnagle AN, Whiteaker JR, Carr SA, Kuhn E, Liu T, Massoni SA, et al. Recommendations for the generation, quantification, storage and handling of peptides used for mass spectrometry-based assays. Clin Chem. 2016;62:48–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lau BYC, Othman A. Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One. 2019;14:e0221052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin Y, Zhou J, Bi D, Chen P, Wang X, Liang S. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal Biochem. 2008;377:259–66.

    Article  CAS  PubMed  Google Scholar 

  32. Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731–40.

    Article  CAS  PubMed  Google Scholar 

  33. León IR, Schwämmle V, Jensen ON, Sprenger RR. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol Cell Proteomics. 2013;12:2992–3005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shahinuzzaman ADA, Chakrabarty JK, Fang Z, Smith D, Kamal AHM, Chowdhury SM. Improved in-solution trypsin digestion method for methanol–chloroform precipitated cellular proteomics sample. J Sep Sci. 2020;43:2125–32.

    Article  CAS  PubMed  Google Scholar 

  35. Porter C. Comparison of commercial LC MS/MS compatible detergents with sodium deoxycholate for shorgun proteomics. J Proteins Proteomics. 2014;5:151–61.

    Google Scholar 

  36. Ji QC, Rodila R, Gage EM, El-Shourbagy TA. A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal Chem. 2003;75:7008–14.

    Article  CAS  PubMed  Google Scholar 

  37. Bros P, Vialaret J, Barthelemy N, Delatour V, Gabelle A, Lehmann S, et al. Antibody-free quantification of seven tau peptides in human CSF using targeted mass spectrometry. Front Neurosci. 2015;9:302.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fernández C, Santos HM, Ruíz-Romero C, Blanco FJ, Capelo-Martínez J-L. A comparison of depletion versus equalization for reducing high-abundance proteins in human serum. Electrophoresis. 2011;32:2966–74.

    Article  PubMed  CAS  Google Scholar 

  39. Wilffert D, Bischoff R, van de Merbel NC. Antibody-free workflows for protein quantification by LC–MS/MS. Bioanalysis. 2015;7:763–79.

    Article  CAS  PubMed  Google Scholar 

  40. Feng M, Morales AB, Poot A, Beugeling T, Bantjes A. Effects of Tween 20 on the desorption of proteins from polymer surfaces. J Biomater Sci Polym Ed. 1995;7:415–24.

    Article  CAS  PubMed  Google Scholar 

  41. Erde J, Loo RRO, Loo JA. Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res. 2014;13:1885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Such-Sanmartín G, Bache N, Bosch J, Gutiérrez-Gallego R, Segura J, Jensen ON. Detection and differentiation of 22 kDa and 20 kDa growth hormone proteoforms in human plasma by LC-MS/MS. Biochim Biophys Acta. 1854;2015:284–90.

    Google Scholar 

  43. Olinares PDB, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT. A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal Chem. 2016;88:2799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson M. Detergents: Triton X-100, Tween-20, and More. https://www.labome.com/method/Detergents-Triton-X-100-Tween-20-and-More.html. Accessed on 04/10/2020.

  45. Giorgianni F, Cappiello A, Beranova-Giorgianni S, Palma P, Trufelli H, Desiderio DM. LC−MS/MS analysis of peptides with methanol as organic modifier: improved limits of detection. Anal Chem. 2004;76:7028–38.

    Article  CAS  PubMed  Google Scholar 

  46. Gangnus T, Burckhardt BB. Improving sensitivity for the targeted LC-MS/MS analysis of the peptide bradykinin using a design of experiments approach. Talanta. 2020;218:121134.

    Article  CAS  PubMed  Google Scholar 

  47. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, et al. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res. 2009;8:787–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao J, Gonzalez-Covarrubias V, Covarrubias VM, Straubinger RM, Wang H, Duan X, et al. A rapid, reproducible, on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver. Anal Chem. 2010;82:2680–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dittrich J, Adam M, Maas H, Hecht M, Reinicke M, Ruhaak LR, et al. Targeted on-line SPE-LC-MS/MS assay for the quantitation of 12 apolipoproteins from human blood. Proteomics. 2018;18:1700279.

    Article  CAS  Google Scholar 

  50. Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R. Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res. 2019;60:900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez-Zepeda D, Taghi M, Smirnova M, Sergent P, Liu W-Q, Chhuon C, et al. LC–MS/MS-based quantification of efflux transporter proteins at the BBB. J Pharm Biomed Anal. 2019;164:496–508.

    Article  CAS  PubMed  Google Scholar 

  52. Hober A, Edfors F, Ryaboshapkina M, Malmqvist J, Rosengren L, Percy AJ, et al. Absolute quantification of apolipoproteins following treatment with omega-3 carboxylic acids and fenofibrate using a high precision stable isotope-labeled recombinant protein fragments based SRM assay. Mol Cell Proteomics. 2019;18:2433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duan X, Abuqayyas L, Dai L, Balthasar JP, Qu J. High-throughput method development for sensitive, accurate and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano-LC/SRM-MS. Anal Chem. 2012;84:4373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duan X, Dai L, Chen S-C, Balthasar JP, Qu J. Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J Chromatogr A. 2012;1251:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem. 2014;86:3575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adrait A, Lebert D, Trauchessec M, Dupuis A, Louwagie M, Masselon C, et al. Development of a protein standard absolute quantification (PSAQTM) assay for the quantification of Staphylococcus aureus enterotoxin A in serum. J Proteome. 2012;75:3041–9.

    Article  CAS  Google Scholar 

  57. Klont F, Pouwels SD, Hermans J, van de Merbel NC, Horvatovich P, ten Hacken NHT, et al. A fully validated liquid chromatography-mass spectrometry method for the quantification of the soluble receptor of advanced glycation end-products (sRAGE) in serum using immunopurification in a 96-well plate format. Talanta. 2018;182:414–21.

    Article  CAS  PubMed  Google Scholar 

  58. Wilffert D, Donzelli R, Asselman A, Hermans J, Govorukhina N, Ten Hacken NH, et al. Quantitative antibody-free LC-MS/MS analysis of sTRAIL in sputum and saliva at the sub-ng/mL level. J Chromatogr B. 2016;1032:205–10.

    Article  CAS  Google Scholar 

  59. Bian Y, Zheng R, Bayer FP, Wong C, Chang Y-C, Meng C, et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat Commun. 2020;11:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Böttcher S, van der Velden VHJ, Villamor N, Ritgen M, Flores-Montero J, Escobar HM, et al. Lot-to-lot stability of antibody reagents for flow cytometry. J Immunol Methods. 2019 Dec 1;475:112294.

    Article  PubMed  CAS  Google Scholar 

  61. Huynh H-H, Bœuf A, Vinh J, Delatour V, Delatour V, Bœuf A, et al. Evaluation of the necessity and the feasibility of the standardization of procalcitonin measurements: activities of IFCC WG-PCT with involvement of all stakeholders. Clin Chim Acta. 2021;515:111–21.

    Article  CAS  PubMed  Google Scholar 

  62. Suraj J, Kurpińska A, Olkowicz M, Niedzielska–Andres E, Smolik M, Zakrzewska A, et al. Development, validation and application of a micro–liquid chromatography–tandem mass spectrometry based method for simultaneous quantification of selected protein biomarkers of endothelial dysfunction in murine plasma. J Pharm Biomed Anal. 2018;149:465–74.

    Article  CAS  PubMed  Google Scholar 

  63. Suraj J, Kurpińska A, Sternak M, Smolik M, Niedzielska-Andres E, Zakrzewska A, et al. Quantitative measurement of selected protein biomarkers of endothelial dysfunction in plasma by micro-liquid chromatography-tandem mass spectrometry based on stable isotope dilution method. Talanta. 2019;194:1005–16.

    Article  CAS  PubMed  Google Scholar 

  64. Becker KL, Nylén ES, White JC, Müller B, Snider RH. Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab. 2004;89:1512–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Qinde Liu and Dr. Yizhao Chen from Health Sciences Authority (HAS) of Singapore for scientific discussions.

Funding

This work was supported by the European Metrology Programme for Innovation and Research (EMPIR) joint research projects [15HLT07] “AntiMicroResist” and [18HLT03] “SEPTIMET” which have received funding from the EMPIR programme co-financed by the Participating States and the European Union’s Horizon 2020 research and innovation programme. Huu-Hien Huynh and Maxence Derbez-Morin were supported by a CIFRE scholarship provided by ANRT (Association Nationale de la Recherche et de la Technologie). Conseil Régional d’Île-de-France subsidized SMBP mass spectrometry equipment (Sesame 2010 No. 10022268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandine Bœuf.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

ESM 1

(PDF 100 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, HH., Bœuf, A., Derbez-Morin, M. et al. Development of an antibody-free ID-LC MS method for the quantification of procalcitonin in human serum at sub-microgram per liter level using a peptide-based calibration. Anal Bioanal Chem 413, 4707–4725 (2021). https://doi.org/10.1007/s00216-021-03361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03361-0

Keywords

Navigation