Log in

Mechanochemical synthesis of fluorescein-based receptor for CN ion detection in aqueous solution and cigarette smoke residue

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A facile green method for the mechanochemical synthesis of Schiff base phenylhydrazono-N-methylene fluorescein (PHMF) with 95% yields has been established. The synthesized receptor assists in the naked-eye detection of CN ions in organic and aqueous media, and F ions in acetonitrile over a series of anions with a color transfer from colorless to pink. A redshift of 160 nm of PHMF-CN complex in the absorbance spectrum and a turn-on response in the fluorescence spectrum were observed, respectively, at λmax 345 to 515 and 519 nm. A strong interaction of PHMF with CN and F ions forming a 1:3 binding stoichiometry has been noted in this study. In an aqueous medium for CN ion, the lower limit of detection (LOD) is defined as 9.204 nM, which is quite better in terms of sensitivity. In addition, PHMF’s paper-strip sensor for rapid real-time CN ion sensing was found to be sufficiently sensitive to successfully detect CN ion in water and a solid state, resulting in a portable device for detecting cyanide ions. In acetonitrile, the receptor’s ability to detect CN ion in cigarette smoke residue was also satisfactorily achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takacs L. The historical development of mechanochemistry. Chem Soc Rev. 2013;42:7649–7659.

  2. Achar TK, Bose A, Mal P. Mechanochemical synthesis of small organic molecules. Beilstein J Org Chem. 2017;13:1907–1931.

  3. Kulla H, Wilke M, Fischer F, Röllig M, Maierhofer C, Emmerling F. Warming up for mechanosynthesis-temperature development in ball mills during synthesis. Chem Commun. 2017;53:1664–7.

    Article  CAS  Google Scholar 

  4. Shiraishi Y, Nakamura M, Hayashi N, Hirai T. Coumarin-spiropyran dyad with a hydrogenated pyran moiety for rapid, selective, and sensitive fluorometric detection of cyanide anion. Anal Chem. 2016;88:6805–11.

    Article  CAS  Google Scholar 

  5. Nelson DL, Cox MM. Lehniger Principles of Biochemistry, 3rd ed. New York: Worth Publishers. 2000, pp. 668, 670–71, 676. ISBN 978-1-57259-153-0.

  6. Casella IG, Gatta M. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2001;13:549–554.

  7. Public Health Goal for Cyanide in Drinking Water, California Environmental Protection Agency, Pesticide and Environmental Toxicology Section. 1997.

  8. Xu Z, Chen X, Kim HN, Yoon J. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 2010;39:127–137.

  9. Ma J, Dasgupta PK. Recent developments in cyanide detection: a review. Anal Chim Acta. 2010;673:117–125.

  10. Day JK, Bresner C, Coombs ND, Fallis IA, Ooi LL, Aldridge S. Colorimetric fluoride ion sensing by polyborylated ferrocenes: structural influences on thermodynamics and kinetics. Inorg Chem. 2008;47:793–804.

    Article  CAS  Google Scholar 

  11. Chetia B, Iyer PK. 2,6-Bis(2-benzimidazolyl)pyridine as a chemosensor for fluoride ions. Tetrahedron Lett. 2008;49:94–7.

    Article  CAS  Google Scholar 

  12. Cho EJ, Ryu BJ, Lee YJ, Nam KC. Visible colorimetric fluoride ion sensors. Org Lett. 2005;7:2607–9.

    Article  CAS  Google Scholar 

  13. Melaimi M, Gabbaï FP. A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor. J Am Chem Soc. 2005;127:9680–1.

    Article  CAS  Google Scholar 

  14. Wang F, Wang L, Chen X, Yoon J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev. 2014;43:4312–24.

    Article  CAS  Google Scholar 

  15. Muir GD. Hazards in chemical laboratory. London: The Royal Chemical Society; 1977.

    Google Scholar 

  16. Kulig KW. Cyanide Toxicity. US Department of Health and Human Services: Atlanta; 1991.

  17. Jiang, J, Wang, X, Zhou W, Gao H, Wu J. Extraction of gold from alkaline cyanide solution by the tetradecyldimethylbenzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Phys Chem Chem Phys. 2002;4:4489–4494

  18. Guidelines for Drinking-water Quality, 3rd edn. World Health Organization; 2004.

  19. Dinda D, Shaw BK, Saha SK. Thymine functionalized graphene oxide for fluorescence “turn-off-on” sensing of Hg2+ and I in aqueous medium. ACS Appl Mater Interfaces. 2015;7:14743–9.

    Article  CAS  Google Scholar 

  20. Zhang J, Xu X, Yang C, Yang F, Yang X. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell cu@au nanoparticles. Anal Chem. 2011;83:3911–7.

    Article  CAS  Google Scholar 

  21. Si F, Romero EC, Yao Z, Xu Z, Morey RL, Liebowitz BN. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants. Fuel Process Technol. 2009;90:56–66.

    Article  CAS  Google Scholar 

  22. Sessler JL, Katayev E, Pantos GD, Ustynyuk YA. Synthesis and study of a new diamidodipyrromethane macrocycle. An anion receptor with a high sulfate-to-nitrate binding selectivity. Chem Commun. 2004;11:1276–7.

    Article  Google Scholar 

  23. Chawla HM, Shahid M, Black DS, Kumar N. A new calix[4]arene based molecular probe for selective and sensitive detection of CN ions in aqueous media. N J Chem. 2014;38:2763–2765.

  24. Zhang C, Liu C, Li B, Chen J, Zhang H, Hu Z, Yi F. A new fluorescent “turn-on” chemodosimeter for cyanide based on dual reversible and irreversible deprotonation of NH and CH groups. N J Chem. 2015;39:1968–1973.

  25. Wang L, Zhu L, Cao D. A colorimetric probe based on diketopyrrolopyrrole and tert-butyl cyanoacetate for cyanide detection. N J Chem. 2015;39:7211–7218.

  26. Shiraishi Y, Nakamura, M, Matsushita, N, Hirai T. N J Chem. 2016;40:195–201.

  27. Lin Q, Lu, TT, Zhu, X, Wei TB, Li H, Zhang YM. Rationally introduce multi-competitive binding interactions in supramolecular gels: a simple and efficient approach to develop multi-analyte sensor array. Chem Sci. 2016;7:5341–53416.

  28. Saini R, Kaur N, Kumar S. Quinones based molecular receptors for recognition of anions and metal ions. Tetrahedron. 2014;70:4285–307.

    Article  CAS  Google Scholar 

  29. Gale PA, Caltagirone C. Anion sensing by small molecules and molecular ensembles. Chem Soc Rev. 2015;44:4212–27.

    Article  CAS  Google Scholar 

  30. Barrull JR, Halluin MD, Grognec EL, Felpina FX. Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chem Commun. 2016;52:2525–8.

    Article  Google Scholar 

  31. Lehn JM. Supramolecular chemistry. Science. 1993;260:1762–1764.

  32. Gennady V, David N, Willem V. Angew Chem Int Ed. 2007;46:2366.

  33. Sessler JL, Lawrence CM, Jayawickramarajah J. Molecular recognition via base-pairing. Chem Soc Rev. 2007; 36:314–325.

  34. Ma JC, Dougherty DA. The cation- π interaction. Chem Rev. 1997;97:1303–1324.

  35. Hunter CA, Lawson KR, Perkins J, Urch CJ. Aromatic interactions. J Chem Soc Perkin Trans 2. 2001;5:651–669.

  36. Anslyn EV, Dougherty DA. Modern physical organic chemistry. University science books, 2006.

  37. Kumar GGV, Kesavan MP, Sankarganesh M, Sakthipandi K, Rajesh J, Sivaraman G. An efficient “Ratiometric” fluorescent chemosensor for the selective detection of Hg2+ ions based on phosphonates: its live cell imaging and molecular keypad lock applications. New J Chem. 2018;42:2865–73.

    Article  Google Scholar 

  38. Dalapati S, Jana S, Guchhait N. Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:499–508.

  39. Sivakumar R, Reena V, Ananthi N, Babu M, Anandan S, Velmathi S. Colorimetric and fluorescence sensing of fluoride anions with potential salicylaldimine based schiff base receptors. Spectrochim Acta A: Mol Biomol Spectrosc. 2010;75:1146–1151.

  40. Rathod RV, Bera S, Singh M, Mondal D. A colorimetric and fluorometric investigation of Cu(II) ion in aqueous medium with a fluorescein-based chemosensor. RSC Adv. 2016;6:34608–15.

    Article  CAS  Google Scholar 

  41. Choi MG, Ryu DH, Jeon HL, Cha S, Cho J, Joo HH, et al. Chemodosimetric Hg2+-selective signaling by mercuration of dichlorofluorescein derivatives. Org Lett. 2008;10:3717–20.

    Article  CAS  Google Scholar 

  42. Huang WT, **e WY, Shi Y, Luo HQ, Li NBJ. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+. Mater Chem. 2012;22:1477–81.

    Article  CAS  Google Scholar 

  43. Tan D, He Y, **ng X, Zhao Y, Tang H, Pang D. Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta. 2013;113:26–30.

    Article  CAS  Google Scholar 

  44. Nam SW, Chen X, Lim J, Kim SH, Kim ST, Cho YH, et al. In vivo fluorescence imaging of bacteriogenic cyanide in the lungs of live mice infected with cystic fibrosis pathogens. PLoS One. 2011;6:e21387.

    Article  CAS  Google Scholar 

  45. Chung SY, Nam SW, Lim J, Park S, Yoon J. A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem Commun. 2009:2866–8.

  46. Li P, **e T, Fan N, Li K, Tang B. Ratiometric fluorescence imaging for distinguishing chloride concentration between normal and ischemic ventricular myocytes. Chem Commun. 2012;48:2077–9.

    Article  CAS  Google Scholar 

  47. Zheng F, Zeng F, Yu C, Hou X, Wu S. A PEGylated fluorescent turn-on sensor for detecting fluoride ions in totally aqueous media and its imaging in live cells. Chem Eur J. 2013;19:936–42.

    Article  Google Scholar 

  48. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med. 1999;27:146–59.

    Article  CAS  Google Scholar 

  49. Yang D, Wang HL, Sun ZN, Chung NW, Shen JG. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J Am Chem Soc. 2006;128:6004–5.

    Article  CAS  Google Scholar 

  50. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem. 2003;278:3170–5.

    Article  CAS  Google Scholar 

  51. Guo ZC, Dixon DA. Hydration of the fluoride anion: structures and absolute hydration free energy from first-principles electronic structure calculations. J Phys Chem A. 2004;108:2020–9.

    Article  Google Scholar 

  52. Maity D, Bhatt M, Desai ML, Suresh E, Desai M, Boricha VP, et al. Effect of conformation, flexibility and intramolecular interaction on ion selectivity of calix[4]arene-based anion sensors: experimental and computational studies. Supramol Chem. 2017;29:600–15.

    Article  CAS  Google Scholar 

  53. Shiraishi Y, Sumiya S, Kohno Y, June RV. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J Organomet Chem. 2008;73:8571–4.

    Article  CAS  Google Scholar 

  54. Prasad S, Sajja RK, Park JK, Naik P, Kaisar MA, Cucullo L. Impact of cigarette smoke extract and hyperglycemic conditions on blood–brain barrier endothelial cells. Fluids and Barriers CNS. 2015;12:18–31.

    Article  Google Scholar 

Download references

Acknowledgements

RR acknowledges UGC, India for the Non-NET fellowship. We appreciate the financial support offered by the University Grants Commission, the GOI, and infrastructural support extended by the Central University of Gujarat.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhananjoy Mondal or Smritilekha Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, R.V., Mondal, D. & Bera, S. Mechanochemical synthesis of fluorescein-based receptor for CN ion detection in aqueous solution and cigarette smoke residue. Anal Bioanal Chem 412, 3177–3186 (2020). https://doi.org/10.1007/s00216-020-02573-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02573-0

Keywords

Navigation