Log in

Fluorescent paper–based sensor based on carbon dots for detection of folic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Paper-based devices have been very much in the foreground of analytical science recently. This work innovatively proposed a fluorescent paper–based sensor (FPS) constructed on a hybrid polydimethylsiloxane (PDMS)/paper platform where cellulose papers functionalized with carbon dots (CDs) as fluorophores by Schiff base chemistry were loaded on the grooves array of a designed PDMS plate. As a proof of concept, the performance of FPS was investigated with folic acid (FA) as the target analyte. Under optimal conditions, FPS enabled a rapid fluorescence quenching response to FA via inner filter effect in a wide range of 1–300 μmol L−1 with the limit of detection of 0.28 μmol L−1. The feasibility of FPS was further verified by the detection of FA in orange juice and urine samples with satisfactory results. The covalent modification of CDs on paper endowed the FPS with good assay reproducibility and stability. Interestingly, FPS achieved a more sensitive assay of FA than the conventional strategy, by which the same CDs were directly used to detect FA in a solution-based system. The FPS illuminated a novel strategy for construction of reliable and sensitive assays based on paper-based devices. It is of paramount importance for its practical application in biosensing and clinical diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babakhanian A, Kaki S, Ahmadi M, Ehzari H, Pashabadi A. Development of alpha-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid. Biosens Bioelectron. 2014;60:185–90.

    Article  PubMed  CAS  Google Scholar 

  2. Kamran S, Asadi M, Absalan G. Adsorption of folic acid, riboflavin, and ascorbic acid from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. Anal Methods-Uk. 2014;6(3):798–806.

    Article  CAS  Google Scholar 

  3. Liu YL, Shen J, Yang X, Sun QZ, Yang XJ. Folic acid reduced triglycerides deposition in primary chicken hepatocytes. J Agric Food Chem. 2018;66(50):13162–72.

    Article  PubMed  CAS  Google Scholar 

  4. Hoegger D, Morier P, Vollet C, Heini D, Reymond F, Rossier JS. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal Bioanal Chem. 2007;387(1):267–75.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang JR, Wang ZL, Qu F, Luo HQ, Li NB. Polyethylenimine-capped silver nanoclusters as a fluorescence probe for highly sensitive detection of folic acid through a two-step electron-transfer process. J Agric Food Chem. 2014;62(28):6592–9.

    Article  PubMed  CAS  Google Scholar 

  6. Liu PF, Liu D, Liu YH, Li L. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid. J Solid State Chem. 2016;241:164–72.

    Article  CAS  Google Scholar 

  7. Akbar S, Anwar A, Kanwal Q. Electrochemical determination of folic acid: a short review. Anal Biochem. 2016;510:98–105.

  8. Li X, Wu X, Zhang F, Zhao B, Li Y. Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta. 2019;195:372–80.

    Article  PubMed  CAS  Google Scholar 

  9. Robinson N, Grabowski P, Rehman I. Alzheimer’s disease pathogenesis: is there a role for folate? Mech Ageing Dev. 2018;174:86–94.

    Article  PubMed  CAS  Google Scholar 

  10. Bailey LB, Rampersaud GC, Kauwell GPA. Folic acid supplements and fortification affect the risk for neural tube defects. Vasc Dis Cancer. 2003;133(6):1961S.

    Google Scholar 

  11. Gujska E, Kuncewicz A. Determination of folate in some cereals and commercial cereal-grain products consumed in Poland using trienzyme extraction and high-performance liquid chromatography methods. Eur Food Res Technol. 2005;221(1–2):208–13.

    Article  CAS  Google Scholar 

  12. Gregory JF. Case study: folate bioavailability. J Nutr. 2001;131:1376s–82s.

    Article  PubMed  CAS  Google Scholar 

  13. Li XG, Wu XM, Zhang F, Zhao B, Li Y. Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta. 2019;195:372–80.

    Article  PubMed  CAS  Google Scholar 

  14. Hussain S, Khan S, Gul S, Pividori MI, Sotomayor MDT. A novel core@shell magnetic molecular imprinted nanoparticles for selective determination of folic acid in different food samples. React Funct Polym. 2016;106:51–6.

    Article  CAS  Google Scholar 

  15. Wang Y, Zhu PH, Tian T, Tang J, Wang L, Hu XY. Synchronous fluorescence as a rapid method for the simultaneous determination of folic acid and riboflavin in nutritional beverages. J Agric Food Chem. 2011;59(23):12629–34.

    Article  PubMed  CAS  Google Scholar 

  16. Watanabe S, Ohtani Y, Tatsukami Y, Aoki W, Amemiya T, Sukekiyo Y, et al. Folate biofortification in hydroponically cultivated spinach by the addition of phenylalanine. J Agric Food Chem. 2017;65(23):4605–10.

    Article  PubMed  CAS  Google Scholar 

  17. Naderi N, Pouliot Y, House JD, Doyen A. Effect of freezing, thermal pasteurization, and hydrostatic pressure on fractionation and folate recovery in egg yolk. J Agric Food Chem. 2017;65(35):7774–80.

    Article  PubMed  CAS  Google Scholar 

  18. Chekin F, Teodorescu F, Coffinier Y, Pan GH, Barras A, Boukherroub R, et al. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron. 2016;85:807–13.

    Article  PubMed  CAS  Google Scholar 

  19. Sun ZJ, Jiang ZW, Li YF. Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal-organic framework hybrids as SERS substrates for folic acid detection. RSC Adv. 2016;6(83):79805–10.

    Article  CAS  Google Scholar 

  20. Ren W, Fang YX, Wang EK. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano. 2011;5(8):6425–33.

    Article  PubMed  CAS  Google Scholar 

  21. de Quiros ARB, de Ron CC, Lopez-Hernandez J, Lage-Yusty MA. Determination of folates in seaweeds by high-performance liquid chromatography. J Chromatogr A. 2004;1032(1–2):135–9.

    Google Scholar 

  22. Ensafi AA, Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem. 2010;640(1–2):75–83.

    Article  CAS  Google Scholar 

  23. Uysal UD, Oncu-Kaya EM, Tuncel M. Determination of folic acid by CE in various cultivated variety of lentils. Chromatographia. 2010;71(7–8):653–8.

    Article  CAS  Google Scholar 

  24. Lin Z, He L. Recent advance in SERS techniques for food safety and quality analysis: a brief review. Curr Opin Food Sci. 2019;28:82–7.

    Article  Google Scholar 

  25. Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Anal Chem. 2018;107:196–211.

    Article  CAS  Google Scholar 

  26. Han Y, Yang WX, Luo XL, He X, Yu Y, Li CH, et al. Cu2+-triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues. J Agric Food Chem. 2019;67(45):12576–83.

    Article  PubMed  CAS  Google Scholar 

  27. Dincer C, Bruch R, Costa-Rama E, Fernandez-Abedu MT, Merkoci A, Manz A, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater. 2019;31(30):1806739.

  28. **a YY, Si J, Li ZY. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.

    Article  PubMed  CAS  Google Scholar 

  29. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41.

    Article  PubMed  CAS  Google Scholar 

  30. Bahadir EB, Sezginturk MK. Lateral flow assays: principles, designs and labels. Trends Anal Chem. 2016;82:286–306.

    Article  CAS  Google Scholar 

  31. Liu LY, Yang DT, Liu GZ. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron. 2019;136:60–75.

    Article  PubMed  CAS  Google Scholar 

  32. Sun XC, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Anal Chem. 2017;89:163–80.

    Article  CAS  Google Scholar 

  33. Jurado-Sanchez B, Pacheco M, Rojo J, Escarpa A. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed. 2017;56(24):6957–61.

    Article  CAS  Google Scholar 

  34. Huang S, Yao JD, Chu X, Liu Y, **ao Q, Zhang Y. One-step facile synthesis of nitrogen-doped carbon dots: a ratiometric fluorescent probe for evaluation of acetylcholinesterase activity and detection of organophosphorus pesticides in tap water and food. J Agric Food Chem. 2019;67(40):11244–55.

    Article  PubMed  CAS  Google Scholar 

  35. Ding CQ, Zhu AW, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res. 2014;47(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  36. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, ** H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7.

    Article  CAS  Google Scholar 

  37. Lin YQ, Wang C, Li LB, Wang H, Liu KY, Wang KQ, et al. Tunable fluorescent silica-coated carbon dots: a synergistic effect for enhancing the fluorescence sensing of extracellular Cu2+ in rat brain. ACS Appl Mater Interfaces. 2015;7(49):27262–70.

    Article  PubMed  CAS  Google Scholar 

  38. Huang K, Chen Y, Zhou F, Zhao XY, Liu JF, Mei SR, et al. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions. J Hazard Mater. 2017;333:137–43.

    Article  PubMed  CAS  Google Scholar 

  39. Huang S, Wang LM, Huang CS, **e JN, Su W, Sheng JR, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuat B Chem. 2015;221:1215–22.

    Article  CAS  Google Scholar 

  40. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta. 2017;184(7):1899–914.

    Article  CAS  Google Scholar 

  41. Wang J, Li RS, Zhang HZ, Wang N, Zhang Z, Huang CZ. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron. 2017;97:157–63.

    Article  PubMed  CAS  Google Scholar 

  42. Li GL, Fu HL, Chen XJ, Gong PW, Chen G, **a L, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem. 2016;88(5):2720–6.

    Article  PubMed  CAS  Google Scholar 

  43. Chen S, Yu Y-L, Wang J-H. Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta. 2018;999:13–26.

    Article  PubMed  CAS  Google Scholar 

  44. Ojani R, Raoof J-B, Zamani S. Electrocatalytic oxidation of folic acid on carbon paste electrode modified by nickel ions dispersed into poly(o-anisidine) film. Electroanalysis. 2009;21(24):2634–9.

    Article  CAS  Google Scholar 

  45. Geszke-Moritz M, Clavier G, Lulek J, Schneider R. Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin. 2012;132(4):987–91.

    Article  CAS  Google Scholar 

  46. Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sensors Actuators B Chem. 2010;151(1):243–9.

    Article  CAS  Google Scholar 

  47. Mazloum-Ardakani M, Mohseni MAS, Beitollahi H, Benvidi A, Naeimi H. Simultaneous determination of dopamine, uric acid, and folic acid by a modified TiO2 nanoparticles carbon paste electrode. Turk J Chem. 2011;35(4):573–85.

    Google Scholar 

  48. Sharma A, Arya S. Economical and efficient electrochemical sensing of folic acid using a platinum electrode modified with hydrothermally synthesized Pd and Ag co-doped SnO2 nanoparticles. J Electrochem Soc. 2019;166(13):B1107–B15.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21804141) and “Double First-Class University” project (CPU2018GY07, CPU2018GY21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruijun Li or Yibing Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards and informed consent

The urine samples were collected at China Pharmaceutical University and informed consents were obtained. The research was approved by the Research Ethics Committee of China Pharmaceutical University, and all experiments were performed in accordance with the guidelines and ethical standards of the institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, X., Miao, C. et al. Fluorescent paper–based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem 412, 2805–2813 (2020). https://doi.org/10.1007/s00216-020-02507-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02507-w

Keywords

Navigation