Log in

DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb2+

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The reduced graphene oxide (rGO) could strongly adsorb and quench the fluorescence of dye-labeled single-stranded DNA (ssDNA); thus, it is widely applied in fluorescent sensors. However, these sensors may suffer from a limited sensitivity due to the low fluorescence recovery when adding the complementary DNA (cDNA) sequence. In this work, the powerful DNA branched junctions were constructed to improve the fluorescence recovery of FAM-labeled probe on rGO. In the presence of target Pb2+, the ribonucleotide (rA) in the substrate was cleaved specifically and the catalytic hairpin assembly of three metastable hairpins was further initiated, accompanied by the formation of DNA branched junctions. Then, the liberated Pb2+ could be recyclable. Impressively, the DNA branched junctions not only hybridize with the FAM-labeled probes with a high efficiency, but also are significantly undesirable for the rGO. Thus, a high fluorescence recovery of FAM-labeled probe on rGO was expected. The integration of the high fluorescence recovery and dual-cycle signal amplification endows the sensing strategy with a good performance for Pb2+ detection, including low detection limit (0.17 nM), good selectivity, and satisfactory practical applicability. The proposed DNA branched junctions offer a novel avenue to improve the fluorescence recovery of the dye-labeled probes on rGO for biological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16:2860–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang YL, Chen WH, Dong XT, Fan H, Wang XH, Bian LJ. Simultaneous detection of trace toxic metal ions, Pb2+ and Ag+, in water and food using a novel single-labeled fluorescent oligonucleotide probe. Sensors Actuators B. 2018;261:58–65.

    CAS  Google Scholar 

  3. Nordberg GF, Fowler BA, Nordberg M, Frigerg L. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic; 2007.

    Google Scholar 

  4. Yu Y, Hong Y, Gao P, Nazeeruddin MK. Glutathione modified gold nanoparticles for sensitive colorimetric detection of Pb2+ ions in rainwater polluted by leaking perovskite solar cells. Anal Chem. 2016;88:12316–22.

    PubMed  CAS  Google Scholar 

  5. Liang P, Sang H. Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Anal Biochem. 2008;380:21–5.

    PubMed  CAS  Google Scholar 

  6. Peng YJ, Li Y, Li LL, Zhu JJ. A label-free aptasensor for ultrasensitive Pb2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen)32+. J Hazard Mater. 2018;359:121–8.

    PubMed  CAS  Google Scholar 

  7. He Q, Miller EW, Wong AP, Chang CJ. A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc. 2006;128:9316–7.

    PubMed  CAS  Google Scholar 

  8. Lu ZW, Lin XN, Zhang JJ, Dai WL, Liu BC, Mo GQ, et al. Ionic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim Acta. 2019;295:514–23.

    CAS  Google Scholar 

  9. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84:5351–7.

    PubMed  CAS  Google Scholar 

  10. Wang XZ, Jiang AW, Hou T, Li HY, Li F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens Bioelectron. 2015;70:324–9.

    PubMed  Google Scholar 

  11. Shomali Z, Kompany-Zareh M, Omidikia N. Fluorescence based investigation of temperature-dependent Pb2+-specific 8-17E DNAzyme catalytic sensor. J Fluoresc. 2019;29:335–42.

    PubMed  CAS  Google Scholar 

  12. Zhou WH, Saran R, Liu JW. Metal sensing by DNA. Chem Rev. 2017;117(12):8272–325.

    PubMed  CAS  Google Scholar 

  13. Chen M, Hassan M, Li HH, Chen QS. Fluorometric determination of lead(II) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles. Microchim Acta. 2020;187:85.

    CAS  Google Scholar 

  14. Liu XL, Wang YZ, Song YJ. Visually multiplexed quantitation of heavy metal ions in water using volumetric bar-chart chip. Biosens Bioelectron. 2018;117:644–50.

    PubMed  CAS  Google Scholar 

  15. Wen ZB, Liang WB, Zhuo Y, **ong CY, Zheng YN, Yuan R, et al. An efficient target-intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions. Chem Commun. 2017;53:7525–8.

    CAS  Google Scholar 

  16. Huang ZJ, Chen JM, Luo ZW, Wang XQ, Duan YX. Label-free and enzyme-free colorimetric detection of Pb2+ based on RNA cleavage and annealing-accelerated hybridization chain reaction. Anal Chem. 2019;91:4806–13.

    PubMed  CAS  Google Scholar 

  17. Peng X, Liang WB, Wen ZB, **ong CY, Zheng YN, Chai YQ, et al. Ultrasensitive fluorescent assay based on a rolling-circle amplification-assisted multisite-strand-displacement-reaction signal-amplification strategy. Anal Chem. 2018;90:7474–9.

    PubMed  CAS  Google Scholar 

  18. Tang SR, Tong P, Li H, Tang J, Zhang L. Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dots tagging. Biosens Bioelectron. 2013;42:608–11.

    PubMed  CAS  Google Scholar 

  19. Li WY, Yang Y, Chen J, Zhang QF, Wang Y, Wang FY, et al. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosens Bioelectron. 2014;53:245–9.

    PubMed  CAS  Google Scholar 

  20. Li Y, Qi XD, Ji XT, Guo YS. Simultaneous electrochemical determination of two analytes based on nuclease-assisted target recycling amplification. Anal Bioanal Chem. 2013;405:6845–51.

    PubMed  CAS  Google Scholar 

  21. Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem. 2015;87:3019–26.

    PubMed  CAS  Google Scholar 

  22. Ge L, Wang WX, Hou T, Li F. A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosens Bioelectron. 2016;77:220–6.

    PubMed  CAS  Google Scholar 

  23. Wu RP, Zhu ZT, Xu XL, Yu CM, Li BL. An investigation of solid-state nanopores on label-free metal-ion signalling via the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. Nanoscale. 2019;11:10339–47.

    PubMed  CAS  Google Scholar 

  24. Chen JH, Zhou SG, Wen JL. Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function. Angew Chem Int Ed. 2014;53:1–6.

    CAS  Google Scholar 

  25. Huang J, Wang H, Yang XH, Quan K, Yang YJ, Ying L, et al. Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chem Sci. 2016;7:3829–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen JH, Zhou SG. Label-free DNA Y junction for bisphenol A monitoring using exonuclease III-based signal protection strategy. Biosens Bioelectron. 2016;77:277–83.

    PubMed  CAS  Google Scholar 

  27. Zhou DH, Wu W, Li Q, Pan JF, Chen JH. A label-free and enzyme-free aptasensor for visual Cd2+ detection based on split DNAzyme fragments. Anal Methods. 2019;11:3546–51.

    CAS  Google Scholar 

  28. Zhao JM, **g P, Xue SY, Xu WJ. Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy. Biosens Bioelectron. 2017;87:157–63.

    PubMed  CAS  Google Scholar 

  29. Song XL, Wang Y, Liu S, Zhang X, Wang JF, Wang HW, et al. A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly. Microchim Acta. 2019;186:559.

    Google Scholar 

  30. Yun W, **ong W, Wu H, Fu M, Huang Y, Liu XY, et al. Graphene oxide-based fluorescent “turn-on” strategy for Hg2+ detection by using catalytic hairpin assembly for amplification. Sensors Actuators B. 2017;249:493–8.

    CAS  Google Scholar 

  31. Ge L, Wang WX, Sun XM, Hou T, Li F. Affinity-mediated homogeneous electrochemical aptasensor on graphene platform for ultrasensitive biomolecule detection via exonuclease-assisted target-analog recycling amplification. Anal Chem. 2016;88(4):2212–9.

    PubMed  CAS  Google Scholar 

  32. Wang WX, Ge L, Sun XM, Hou T, Li F. Graphene-assisted label-free homogeneous electrochemical biosensing strategy based on aptamer-switched bidirectional DNA polymerization. ACS Appl Mater Interfaces. 2015;7:28566–75.

    PubMed  CAS  Google Scholar 

  33. Lu C, Huang PJ, Liu BW, Ying YB, Liu JW. Comparison of graphene oxide and reduced graphene oxide for DNA adsorption and sensing. Langmuir. 2016;32:10776–83.

    PubMed  CAS  Google Scholar 

  34. He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater. 2010;20:453–9.

    CAS  Google Scholar 

  35. Wang YH, Deng HH, Liu YH, Shi XQ, Liu AL, Peng HP, et al. Partially reduced graphene oxide as highly efficient DNA nanoprobe. Biosens Bioelectron. 2016;80:140–5.

    PubMed  CAS  Google Scholar 

  36. Noordeen AK, Sambasivam S, Chinnasamy S, Ramasamy J, Subramani T. Hierarchical flower structured Bi2S3/reduced graphene oxide nanocomposite for high electrochemical performance. J Inorg Organomet Polym. 2018;28:73–83.

    CAS  Google Scholar 

  37. Li X, **e JQ, Jiang BY, Yuan R, **ang Y. Metallo-toehold-activated catalytic hairpin assembly formation of three-way DNAzyme junctions for amplified fluorescent detection of Hg2+. ACS Appl Mater Interfaces. 2017;9:5733–8.

    PubMed  CAS  Google Scholar 

  38. Long GL, Winefordner JD. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983;55:712A–24A.

    CAS  Google Scholar 

  39. Jiang MH, Lu P, Lei YM, Chai YQ, Yuan R, Zhuo Y. Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochim Acta. 2018;271(1):464–71.

    CAS  Google Scholar 

  40. Park M, Ha HD, Kim YT, Jung JH, Kim SH, Kim DH, et al. Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection. Anal Chem. 2015;87:10969–75.

    PubMed  CAS  Google Scholar 

  41. Zhou WJ, Liang WB, Li DX, Yuan R, **ang Y. Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells. Biosens Bioelectron. 2016;85:573–9.

    PubMed  CAS  Google Scholar 

  42. Liu SY, Na WD, Pang S, Su XG. Fluorescence detection of Pb2+ based on the DNA sequence functionalized CdS quantum dots. Biosens Bioelectron. 2014;58:17–21.

    PubMed  CAS  Google Scholar 

  43. Li X, Yun W, Guo WL, Zhang WL, Yang LZ. Simple, one step and sensitive fluorescent nanoprobe for simultaneous detection of Pb2+ and Cu2+ based on pincer enzyme strand and signal amplification strategy. Sensors Actuators B Chem. 2019;301:127170.

    CAS  Google Scholar 

  44. Lu W, Lin CQ, Yang J, Wang XQ, Yao B, Wang M. A DNAzyme assay coupled with effective magnetic separation and rolling circle amplification for detection of lead cations with a smartphone camera. Anal Bioanal Chem. 2019;411:5383–91.

    PubMed  CAS  Google Scholar 

  45. Wu JK, Lu YF, Ren NN, Jia M, Wang RN, Zhang JL. DNAzyme-functionalized R-phycoerythrin as a cost-effective and environment-friendly fluorescent biosensor for aqueous Pb2+ detection. Sensors. 2019;19:2732.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21775122, 21775124); the Natural Science Foundation of Chongqing City (cstc2018icyjAX0693), China; the Natural Science Foundation of Jiangsu Province of China (BK20170378); and the Natural Science Research Foundation of Jiangsu Higher Education Institutions (17KJB150036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, S., Yuan, R. et al. DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb2+. Anal Bioanal Chem 412, 2455–2463 (2020). https://doi.org/10.1007/s00216-020-02458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02458-2

Keywords

Navigation