Log in

Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid–liquid microextraction based on an in situ acid–base effervescent reaction and solidification of a floating organic droplet

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and rapid method named dispersive solid–liquid microextraction combining in situ acid–base reaction-based effervescence and solidification of a floating organic droplet was developed for the simultaneous determination of eight neonicotinoid insecticides and two metabolites in rice by ultra-performance liquid chromatography-tandem mass spectrometry. The samples were extracted with sodium citrate monobasic-modified acetonitrile by vortexing and purified by primary secondary amine, and then a mixture of 1-undecanol and sodium carbonate aqueous solution was rapidly injected. An acid–base reaction and carbon dioxide bubbles were generated in situ, which promoted the dispersion of 1-undecanol droplets and subsequent transfer of the analytes from the acidified acetonitrile extract to 1-undecanol. The 1-undecanol phase was easily retrieved by centrifugation and solidification in an ice bath. This novel dispersive solid–liquid microextraction fully utilized the advantages of the effervescent reaction and floating droplet solidification, which was carried out in a tube and did not require stepwise analysis for a solid matrix. Under the optimized conditions, the average recoveries of the analytes ranged from 77.8 to 97.1% with relative standard deviations less than 7.3. The limits of detection varied between 0.01 and 0.1 μg kg−1, and enrichment factors were 42–55. The proposed method provides a quantitative, sensitive, and convenient analytical tool applicable for routine monitoring of neonicotinoids in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45:247–68.

    Article  CAS  PubMed  Google Scholar 

  2. Ford K, Casida J. Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J Agric Food Chem. 2008;56:10168–75.

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe E, Baba K, Miyake S. Analytical evaluation of enzyme-linked immunosorbent assay for neonicotinoid dinotefuran for potential application to quick and simple screening method in rice samples. Talanta. 2011;84:1107–11.

    Article  CAS  PubMed  Google Scholar 

  4. Tapparo A, Marton D, Giorio C, Zanella A, Soldà L, Marzaro M, et al. Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ Sci Technol. 2012;46:2592–9.

    Article  CAS  PubMed  Google Scholar 

  5. EU insecticides database (2016). http://ec.europa.eu/sanco_insecticides/public/index.cfm. 03/01/2016.

  6. Sánchez-Bayo F, Hyne RV. Detection and analysis of neonicotinoids in river waters—development of a passive sampler for three commonly used insecticides. Chemosphere. 2014;99:143–51.

    Article  CAS  PubMed  Google Scholar 

  7. Dankyi E, Gordon C, Carboo D, Fomsgaard IS. Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Sci Total Environ. 2014;499:276–83.

    Article  CAS  PubMed  Google Scholar 

  8. Farajzadeh MA, Bamorowat M, Mogaddam MRA. Ringer tablet-based ionic liquid phase microextraction: application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples. Talanta. 2016;160:211–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ko AY, Rahman MM, El-Aty AMA, Jang J, Park JH, Cho SK, et al. Development of a simple extraction and oxidation procedure for the residue analysis of imidacloprid and its metabolites in lettuce using gas chromatography. Food Chem. 2014;148:402–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gbylik-Sikorska M, Sniegocki T, Posyniak A. Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J Chromatogr B. 2015;990:132–40.

    Article  CAS  Google Scholar 

  11. Banerjee K, Oulkar DP, Dasgupta S, Patil SB, Patil SH, Savant R, et al. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1173:98–109.

    Article  CAS  PubMed  Google Scholar 

  12. **ao Z, Li X, Wang X, Shen J, Ding S. Determination of neonicotinoid insecticides residues in bovine tissues by pressurized solvent extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2011;879:117–22.

    Article  CAS  Google Scholar 

  13. Jiao WT, **ao Y, Qian XS, Tong MM, Hu YZ, Hou RY, et al. Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra performance liquid chromatography-electrospray tandem mass spectrometry. Food Chem. 2016;210:26–34.

    Article  CAS  PubMed  Google Scholar 

  14. Chitescu CL, Oosterink E, de Jong J, Stolker AAML. Ultrasonic or accelerated solvent extraction followed by U-HPLC-high mass accuracy MS for screening of pharmaceuticals and fungicides in soil and plant samples. Talanta. 2012;88:653–62.

    Article  CAS  PubMed  Google Scholar 

  15. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M. Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid-liquid microextraction. J Agric Food Chem. 2013;61:4799–805.

    Article  CAS  PubMed  Google Scholar 

  16. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Milovanović I, et al. Development of multiresidue DLLME and QuEChERS based LC-MS/MS method for determination of selected neonicotinoid insecticides in honey liqueur. Food Res Int. 2014;55:11–9.

    Article  CAS  Google Scholar 

  17. Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, et al. Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction. Food Chem. 2016;202:389–95.

    Article  CAS  PubMed  Google Scholar 

  18. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, et al. Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta. 2013;111:125–33.

    Article  CAS  Google Scholar 

  19. Martín J, Santos JL, Aparicio I, Alonso E. Determination of hormones, a plasticizer, preservatives, perfluoroalkylated compounds, and a flame retardant in water samples by ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic drop. Talanta. 2015;143:335–43.

    Article  CAS  PubMed  Google Scholar 

  20. Bolzan CM, Caldas SS, Guimarães BS, Primel EG. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of triazine and triazoles in mineral water samples. J Sep Sci. 2016;39:3410–7.

    Article  CAS  PubMed  Google Scholar 

  21. Vera-Avila LE, Rojo-Portillo T, Ovarrubias-Herrera R, Peña-Alvarez A. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples. Anal Chim Acta. 2013;805:60–9.

    Article  CAS  PubMed  Google Scholar 

  22. Tuzen M, Pekiner OZ. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages. Food Chem. 2015;188:619–24.

    Article  CAS  PubMed  Google Scholar 

  23. Wang HZ, Hu L, Liu XY, Yin SJ, Lu RH, Zhang SB, et al. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples. J Chromatogr A. 2017;1516:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Shalash M, Makahleh A, Salhimi SM, Saad B. Vortex-assisted liquid-liquid-liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks. Talanta. 2017;174:428–35.

    Article  CAS  PubMed  Google Scholar 

  25. Mohammadzadeh A, Ramezani M, Niazi A. Magnetic stirring-assisted dispersive liquid-liquid microextraction in narrow neck glass tube for determination of cadmium in water, fruit and vegetable samples using response surface methodology. Desalin Water Treat. 2016;57:9745–55.

    Article  CAS  Google Scholar 

  26. You XW, **ng ZK, Liu FM, Zhang X. Air-assisted liquid-liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples. Anal Chim Acta. 2015;875:54–60.

    Article  CAS  PubMed  Google Scholar 

  27. Molaei S, Saleh A, Ghoulipour V, Seidi S. Dissolved carbon dioxide flotation: an effective way for phase separation in emulsification microextraction method. J Chromatogr A. 2015;1388:280–5.

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Shen Z, Wang P, Liu C, Zhou Z, Liu D. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water. J Chromatogr A. 2014;1371:58–64.

    Article  CAS  PubMed  Google Scholar 

  29. Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles. Anal Chem Acta. 2014;807:61–6.

    Article  CAS  Google Scholar 

  30. Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M. Effervescence-assisted dispersive micro-solid phase extraction. J Chromatogr A. 2011;1218:9128–34.

    Article  CAS  PubMed  Google Scholar 

  31. Farajzadeh MA, Mogaddam MRA. Acid-base reaction-based dispersive liquid-liquid microextraction method for extraction of three classes of pesticides from fruit juice samples. J Chromatogr A. 2016;1431:8–16.

    Article  CAS  PubMed  Google Scholar 

  32. Xue JY, Li HC, Liu FM, Jiang WQ, Hou F. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography. Food Chem. 2016;196:867–76.

    Article  CAS  PubMed  Google Scholar 

  33. Yıldız E, Çabuk H. A new solidified effervescent tablet-assisted dispersive liquid-liquid microextraction for the analysis of fungicides in fruit juice samples. Anal Methods. 2018;10:330–7.

    Article  Google Scholar 

  34. Yang MY, Wu XL, Jia YH, ** XF, Yang XL, Lu RH, et al. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal Chim Acta. 2016;906:118–27.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang WQ, Chen XC, Liu FM, You XW, Xue JY. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. J Sep Sci. 2014;37:3157–63.

    Article  CAS  PubMed  Google Scholar 

  36. Wang P, Yang X, Wang J, Cui J, Dong AJ, Zhao HT, et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography. Food Chem. 2012;134:1691–8.

    Article  CAS  PubMed  Google Scholar 

  37. Rahman MM, El-Aty AMA, Choi J-H, Kim S-W, Shin SC, Shim J-H. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chem. 2015;168:445–53.

    Article  CAS  PubMed  Google Scholar 

  38. Yang X, Zhang P, Li X, Hu L, Gao H, Zhang S, et al. Effervescence-assisted β-cyclodextrin/attapulgite composite for the in-syringe dispersive solid-phase extraction of pyrethroids in environmental water samples. Talanta. 2016;153:353–9.

    Article  CAS  PubMed  Google Scholar 

  39. Vakh C, Pochivalov A, Andruch V, Moskvin L, Bulatov A. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples. Anal Chim Acta. 2016;907:54–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wen YY, Li JH, Yang FF, Zhang WW, Li WR, Liao CY, et al. Salting-out assisted liquid-liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by high-performance liquid chromatography. Talanta. 2013;106:119–26.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang ML, Chen HP, Li Z, Wang CP, Ma GC, Liu X. Solid-phase purification and extraction for the determination of trace neonicotinoid pesticides in tea infusion. J Sep Sci. 2016;39:910–7.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang SH, Yang XM, Yin XF, Wang C, Wang Z. Dispersive liquid-liquid microextraction combined with swee** micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food Chem. 2012;133:544–50.

    Article  CAS  Google Scholar 

  43. Zheng SL, Wu HZ, Li ZG, Wang JM, Zhang H, Qian MR. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale. J Sep Sci. 2015;38:121–7.

    Article  CAS  PubMed  Google Scholar 

  44. Vichapong J, Burakham R, Srijaranai S. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides. Talanta. 2013;117:221–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly supported by the National Natural Science Foundation of China (41807490), the Natural Science Research Project of Higher Education of Anhui (KJ2018A0128), and the University Youth Science Foundation of Anhui Agricultural University (2017zd04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimao Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Zhang, D., Wu, X. et al. Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid–liquid microextraction based on an in situ acid–base effervescent reaction and solidification of a floating organic droplet. Anal Bioanal Chem 411, 315–327 (2019). https://doi.org/10.1007/s00216-018-1482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1482-z

Keywords

Navigation