Log in

Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment.

Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Worwood VA. The complete book of essential oils and aromatherapy: over 600 natural, non-toxic & fragrant recipes to create health beauty a safe home environment. New World Library: Novato; 2012.

    Google Scholar 

  2. Do TKT, Hadji-Minaglou F, Antoniotti S, Fernandez X. Authenticity of essential oils. TrAC Trends Anal Chem. 2015;66:146–57.

    Article  CAS  Google Scholar 

  3. Ghosh D, Mukherjee S, Sarkar S, Leela N, Murthy VK, Bhattacharyya N et al. Exploratory study on aroma profile of cardamom by GC-MS and electronic nose. In: Mason A, Mukhopadhyay SC, Jayasundera KP, Bhattacharyya N, editors. Sensing technology: current status and future trends II. Cham: Springer International Publishing; 2014. pp. 207–16.

  4. Talou T, Maurel S, Gaset A. Electronic nose versus multicapillary gas chromatography: application for rapid differentiation of essential oils. Dev Food Sci. 1998;40:79–86.

    Article  CAS  Google Scholar 

  5. Cazaussus A, Pes R, Sellier N, Tabet J-C. GC-MS and GC-MS-MS analysis of a complex essential oil. Chromatographia. 1988;25(10):865–9.

    Article  CAS  Google Scholar 

  6. Miladinovic D, Ilic B, Matejic J, Randjelovic V, Nikolic D. Chemical composition of the essential oil of Geum coccineum. Chem Nat Compd. 2015;51(4):785–6.

    Article  CAS  Google Scholar 

  7. Viuda-Martos M, Ruíz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Chemical composition of the essential oils obtained from some spices widely used in Mediterranean region. Acta Chim Slov. 2007;54(4):921.

    CAS  Google Scholar 

  8. Yaglioglu AS, Demirtas I. Comparative essential oil composition of flowers, leaves, and stems of Centaurea polypodiifolia var. polypodiifolia. Chem Nat Compd. 2015;5(51):982–4.

    Article  Google Scholar 

  9. Milman BL. Identification of chemical compounds. TrAC Trends Anal Chem. 2005;24(6):493–508.

    Article  CAS  Google Scholar 

  10. Babushok V, Linstrom P, Zenkevich I. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. 2011;40(4):043101.

    Article  Google Scholar 

  11. Bianchi F, Careri M, Mangia A, Musci M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: database creation and evaluation of precision and robustness. J Sep Sci. 2007;30(4):563–72.

    Article  CAS  Google Scholar 

  12. Gallegos J, Garrido-Delgado R, Arce L, Medina LM. Volatile metabolites of goat cheeses determined by ion mobility spectrometry. Potential applications in quality control. Food Anal Methods. 2015;8(7):1699–709.

    Article  Google Scholar 

  13. Krisilova E, Levina A, Makarenko V. Determination of the volatile compounds of vegetable oils using an ion-mobility spectrometer. J Anal Chem. 2014;69(4):371–6.

    Article  CAS  Google Scholar 

  14. Garrido-Delgado R, Arce L, Valcárcel M. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils. Anal Bioanal Chem. 2012;402(1):489–98.

    Article  CAS  Google Scholar 

  15. Garrido-Delgado R, del Mar Dobao-Prieto M, Arce L, Valcárcel M. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem. 2015;187:572–9.

    Article  CAS  Google Scholar 

  16. Garrido-Delgado R, Mercader-Trejo F, Sielemann S, De Bruyn W, Arce L, Valcárcel M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal Chim Acta. 2011;696(1):108–15.

    Article  CAS  Google Scholar 

  17. Liang F, Kerpen K, Kuklya A, Telgheder U. Fingerprint identification of volatile organic compounds in gasoline contaminated groundwater using gas chromatography differential ion mobility spectrometry. Int J Ion Mobil Spectrom. 2012;15(3):169–77.

    Article  CAS  Google Scholar 

  18. Criado-García L, Garrido-Delgado R, Arce L, López F, Peón R, Valcárcel M. Simultaneous determination of benzene and phenol in heat transfer fluid by head-space gas chromatography hyphenated with ion mobility spectrometry. Talanta. 2015;144:944–52.

    Article  Google Scholar 

  19. Scheinemann A, Sielemann S, Walter J, Doll T. Evaluation strategies for coupled GC-IMS measurement including the systematic use of parametrized ANN. Open J Appl Sci. 2012;2(04):257.

    Article  Google Scholar 

  20. Cook GW, LaPuma PT, Hook GL, Eckenrode BA. Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents. J Forensic Sci. 2010;55(6):1582–91.

    Article  CAS  Google Scholar 

  21. Levin M, Lantsuzskaya E. Identification of volatile organic compounds by retention times and ion mobility spectra. J Anal Chem. 2014;69(12):1153–8.

    Article  CAS  Google Scholar 

  22. Márquez-Sillero I, Cárdenas S, Sielemann S, Valcárcel M. On-line headspace-multicapillary column-ion mobility spectrometry hyphenation as a tool for the determination of off-flavours in foods. J Chromatogr A. 2014;1333:99–105.

    Article  Google Scholar 

  23. Denawaka CJ, Fowlis IA, Dean JR. Evaluation and application of static headspace–multicapillary column-gas chromatography–ion mobility spectrometry for complex sample analysis. J Chromatogr A. 2014;1338:136–48.

    Article  CAS  Google Scholar 

  24. Kanu AB, Hill HH. Ion mobility spectrometry detection for gas chromatography. J Chromatogr A. 2008;1177(1):12–27.

    Article  CAS  Google Scholar 

  25. Perl T, Bödeker B, Jünger M, Nolte J, Vautz W. Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem. 2010;397(6):2385–94.

    Article  CAS  Google Scholar 

  26. Gerhardt N, Birkenmeier M, Sanders D, Rohn S, Weller P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal Bioanal Chem. 2017;409:1–10.

    Article  Google Scholar 

  27. Eiceman GA, Karpas Z, Hill HH Jr. Ion mobility spectrometry. 3rd ed. Boca Raton: CRC Press; 2013.

  28. Ewing RG, Eiceman GA, Stone J. Proton-bound cluster ions in ion mobility spectrometry. Int J Mass Spectrom. 1999;193(1):57–68.

    Article  CAS  Google Scholar 

  29. Lantsuzskaya E, Krisilov A, Levina A. Structure of aldehyde cluster ions in the gas phase, according to data from ion mobility spectrometry and ab initio calculations. Russ J Phys Chem A. 2015;89(9):1590–4.

    Article  CAS  Google Scholar 

  30. Lantsuzskaya E, Krisilov A, Levina A. Structure of the cluster ions of ketones in the gas phase according to ion mobility spectrometry and ab initio calculations. Russ J Phys Chem A. 2015;89(10):1838–42.

    Article  CAS  Google Scholar 

  31. Viitanen A-K, Mattila T, Mäkelä J, Marjamäki M, Anttalainen O, Keskinen J. Experimental study of the effect of temperature on ion cluster formation using ion mobility spectrometry. Atmos Res. 2008;90(2):115–24.

    Article  CAS  Google Scholar 

  32. Kumari S, Pundhir S, Priya P, Jeena G, Punetha A, Chawla K, et al. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom. Database. 2014;2014:bau120.

    Article  Google Scholar 

Download references

Funding

The present study was carried out with the financial support provided by the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT-ECUADOR) through the agreement No. 20140077CI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Rodríguez-Maecker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Maecker, R., Vyhmeister, E., Meisen, S. et al. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Anal Bioanal Chem 409, 6595–6603 (2017). https://doi.org/10.1007/s00216-017-0613-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0613-2

Keywords

Navigation