Log in

Effect of amino compounds on luminol-H2O2-gold nanoparticle chemiluminescence system

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the effect of amino compounds on the catalytic property of gold nanoparticles (AuNPs) in the luminol-H2O2 chemiluminescence (CL) system was systematically investigated. The experimental results showed that the catalytic ability of AuNPs on luminol-H2O2 system can be changed after AuNPs interacted with the amino compounds. It was found that two main aspects influence the catalytic property of AuNPs: (1) the electron density in conduction bands of AuNPs and (2) the surface negative charge density of AuNPs. Some amino compounds can decrease the electron density in the conduction bands of AuNPs after they reacted with AuNPs, resulting in a decrease of the catalytic property of AuNPs on luminol-H2O2 system. However, some amino compounds can cause AuNPs to aggregate after they reacted with AuNPs. The surface negative charge density of AuNPs would decrease, and zeta potentials were tested to verify the change of the surface negative charge density of AuNPs. As a result, the catalytic property of AuNPs on luminol-H2O2 system increased, and an enhanced CL signal can be obtained after the amino compounds reacted with AuNPs. This work will help people understand the catalytic mechanism of AuNPs and establish the CL method for the determination of amino compounds.

Effects of amino compound on luminol-H2O2-AuNPs CL system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iranifam M. Analytical applications of chemiluminescence methods for cancer detection and therapy. TRAC-Trend Anal Chem. 2014;59:156–83.

    Article  CAS  Google Scholar 

  2. Khan P, Idrees D, Moxley MA, Corbett JA, Ahmad F, Figura GV, et al. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotech. 2014;173:333–55.

    Article  CAS  Google Scholar 

  3. Huertas-Pérez JF, Moreno-González D, Airado-Rodríguez D, Lara FJ, García-Campaña AM. Advances in the application of chemiluminescence detection in liquid chromatography. TRAC-Trend Anal Chem. 2016;75:235–48.

    Article  Google Scholar 

  4. He Y, Cui H. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles. Biosens Bioelectron. 2013;47:313–7.

    Article  CAS  Google Scholar 

  5. Chi Q, Chen WY, He ZK. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution. Luminescence. 2015;30:990–5.

    Article  CAS  Google Scholar 

  6. Alves J, Boaro A, Silva JSD, Ferreira TL, Keslarek VB, Cabral CA, et al. Lophine derivatives as activators in peroxyoxalate chemiluminescence. Photochem Photobiol Sci. 2015;14:320–8.

    Article  CAS  Google Scholar 

  7. Chaichi MJ, Ehsani M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensor Actuat B-Chem. 2016;223:713–22.

    Article  CAS  Google Scholar 

  8. Mokhtari A, Goudarzi A, Benam M, Langroodi SM, Karimmohammad S, Keyvanfard M. Fabrication and characterization of Cu(OH)2/CuO nanowires as a novel sensitivity enhancer of the luminol–H2O2 chemiluminescence system: determination of cysteine in human plasma. RSC Adv. 2016;6:5320–9.

    Article  CAS  Google Scholar 

  9. Zhang YF, Liu JF, Liu T, Li HB, Xue QW, Li R, et al. Label-free, sensitivity detection of fibrillar fibrin using gold nanoparticle-based chemiluminescence system. Biosens Bioelectron. 2016;77:111–5.

    Article  CAS  Google Scholar 

  10. Wu YC, Nie F. Caspase-1 assay based on peptide and luminol labeled gold nanoparticle as chemiluminescence probe coupling magnetic separation technology. Sensor Actuat B-Chem. 2015;220:481–4.

    Article  CAS  Google Scholar 

  11. Li QQ, Liu F, Lu C, Lin JM. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. J Phys Chem C. 2011;115:10964–70.

    Article  CAS  Google Scholar 

  12. Lu C, Li QQ, Chen S, Zhao LX, Zheng ZX. Gold nanorod-catalyzed luminol chemiluminescence and its selective determination of glutathione in the cell extracts of Saccharomyces cerevisiae. Talanta. 2011;85:476–81.

    Article  CAS  Google Scholar 

  13. Li QQ, Shang F, Lu C, Zheng ZX, Lin JM. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. J Chromatogr A. 2011;1218:9064–70.

    Article  CAS  Google Scholar 

  14. Zhang LJ, Lu BQ, Lu C. Chemiluminescence sensing of aminothiols in biological fluids using peroxymonocarbonate-prepared networked gold nanoparticles. Analyst. 2013;138:850–5.

    Article  CAS  Google Scholar 

  15. Bai SL, Chen QS, Lu C, Lin JM. Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta. 2013;768:96–101.

    Article  CAS  Google Scholar 

  16. Li N, Liu DQ, Cui H. Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal Bioanal Chem. 2014;406:5561–71.

    Article  CAS  Google Scholar 

  17. Qi YY, Li BX, **u FR. Effect of aggregated silver nanoparticles on luminol chemiluminescence system and its analytical application. Spectrochim Acta A. 2014;128:76–81.

    Article  CAS  Google Scholar 

  18. Guo JZ, Cui H, Zhou W, Wang W. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photoch Photobio A. 2008;193:89–96.

    Article  CAS  Google Scholar 

  19. Liu B, He Y, Duan CF, Li N, Cui H. Platinum nanoparticle-catalyzed lucigenin–hydrazine chemiluminescence. J Photoch Photobio A. 2011;217:62–7.

    Article  CAS  Google Scholar 

  20. He Y, Cui H. Synthesis of dendritic platinum nanoparticles/lucigenin/reduced graphene oxide hybrid with chemiluminescence activity. Chem-Eur J. 2012;18:4823–6.

    Article  CAS  Google Scholar 

  21. Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry, TRAC-Trend Anal Chem. 2010;29:1113–1116.

  22. Li QQ, Zhang LJ, Li JG, Lu C. Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TRAC-Trend Anal Chem. 2011;30:401–13.

    Article  Google Scholar 

  23. Zhang ZF, Cui H, Lai CZ, Liu LJ. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem. 2005;77:3324–9.

    Article  CAS  Google Scholar 

  24. Li YX, Yang P, Wang P, Wang L. Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal Bioanal Chem. 2007;387:585–92.

    Article  CAS  Google Scholar 

  25. Khajvand T, Chaichi MJ, Colagar AH. Sensitive assay of hexythiazox residue in citrus fruits using gold nanoparticles-catalysed luminol-H2O2 chemiluminescence. Food Chem. 2015;173:514–20.

    Article  CAS  Google Scholar 

  26. Sheng ZH, Han HY, Yang GD. A novel method for sensing of methimazole using gold nanoparticle-catalyzed chemiluminescent reaction. Luminescence. 2011;26:196–201.

    Article  CAS  Google Scholar 

  27. Yang P, Chen YH, Zhu QY, Wang FW, Wang L, Li YX. Sensitive chemiluminescence method for the determination of glutathione, l-cysteine and 6-mercaptopurine. Microchim Acta. 2008;163:263–9.

    Article  CAS  Google Scholar 

  28. **ao QY, Gao HL, Lu C, Yuan QP. Gold nanoparticle-based optical probes for sensing aminothiols. Trends Anal Chem. 2012;40:64–76.

    Article  CAS  Google Scholar 

  29. Wang L, Yang P, Li YX, Chen HQ, Li MG, Luo FB. A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles. Talanta. 2007;72:1066–72.

    Article  CAS  Google Scholar 

  30. Qi YY, Li L, Li BX. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes. Spectrochim Acta A. 2009;74:127–31.

    Article  Google Scholar 

  31. Duan HY, Chen F, Ai XP, He ZK. The interaction between propranolol and gold nanoparticles and its analytical application. Chin Chem Lett. 2005;16:947–50.

    CAS  Google Scholar 

  32. Islam MS, Kang SH. Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta. 2011;84:752–8.

    Article  CAS  Google Scholar 

  33. Wang Y, Li D, Ren W, Liu Z, Dong S. Ultrasensitive colorimetric detection of protein by aptamer–Au nanoparticles conjugates based on a dot-blot assay. Chem Commun. 2008;22:2520-522.

  34. Qi YY, Li BX. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Chem Eur J. 2011;17:1642–8.

    Article  CAS  Google Scholar 

  35. Liu W, Guo YM, Li HF, Zhao M, Li BX. A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochim Acta A. 2015;137:1298–303.

    Article  CAS  Google Scholar 

  36. Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc. 2003;125:8102–3.

    Article  CAS  Google Scholar 

  37. Henglein A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem. 1993;97:5457–71.

    Article  CAS  Google Scholar 

  38. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B. 2004;108:13963–71.

    Article  CAS  Google Scholar 

  39. Huang CZ, Liao QG, Gan LH, Guo FL, Li YF. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Anal Chim Acta. 2007;604:165–9.

    Article  CAS  Google Scholar 

  40. Sharma RK, Sharma P, Maitra A. Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction. J Colloid Interf Sci. 2003;265:134–40.

    Article  CAS  Google Scholar 

  41. Qi YY, Li BX, Zhang ZJ. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluminescence system. Biosens Bioelectron. 2009;24:3581–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the National Natural Science Foundation of China (No. 21005048) and Shaanxi Province Science Foundation (No. 2015JM2066) for funding this work. The authors also thank the Fundamental Research Funds for the Central Universities (No. GK201603049) and Program for Innovative Research Team in Shaanxi Province (No. 2014KCT-28) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Baoxin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Highlights of Analytical Chemical Luminescence with guest editors Aldo Roda, Hua Cui, and Chao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Luo, J., Zhao, M. et al. Effect of amino compounds on luminol-H2O2-gold nanoparticle chemiluminescence system. Anal Bioanal Chem 408, 8821–8830 (2016). https://doi.org/10.1007/s00216-016-9792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9792-5

Keywords

Navigation