Log in

Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L−1.

Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capriotti AL, Cavaliere C, Colapicchioni V, Piovesana S, Samperi R, Laganà A. Analytical strategies based on chromatography–mass spectrometry for the determination of estrogen-mimicking compounds in food. J Chromatogr A. 2013;1313:62–77. doi:10.1016/j.chroma.2013.06.054.

    Article  CAS  Google Scholar 

  2. Laganà A, Bacaloni A, De Leva I, Faberi A, Fago G, Marino A. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal Chim Acta. 2004;501:79–88. doi:10.1016/j.aca.2003.09.020.

    Article  Google Scholar 

  3. Malekinejad H, Scherpenisse P, Bergwerff AA. Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). J Agric Food Chem. 2006;54:9785–91. doi:10.1021/jf061972e.

    Article  CAS  Google Scholar 

  4. European Union (2015) Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off J L 78, pp. 40–42. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1449499825711&uri=CELEX:32015D0495.

  5. Liu Z, Kanjo Y, Mizutani S. A review of phytoestrogens: their occurrence and fate in the environment. Water Res. 2010;44:567–77. doi:10.1016/j.watres.2009.03.025.

    Article  CAS  Google Scholar 

  6. Jarošová B, Javůrek J, Adamovský O, Hilscherová K. Phytoestrogens and mycoestrogens in surface waters—their sources, occurrence, and potential contribution to estrogenic activity. Environ Int. 2015;81:26–44. doi:10.1016/j.envint.2015.03.019.

    Article  Google Scholar 

  7. Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol. 2010;31:400–19. doi:10.1016/j.yfrne.2010.03.003.

    Article  CAS  Google Scholar 

  8. Bacaloni A, Cavaliere C, Faberi A, Foglia P, Samperi R, Laganà A. Determination of isoflavones and coumestrol in river water and domestic wastewater sewage treatment plants. Anal Chim Acta. 2005;531:229–37. doi:10.1016/j.aca.2004.10.037.

    Article  CAS  Google Scholar 

  9. European Union (1985) Council Directive 85/649/EEC of 31 December 1985 prohibiting the use in livestock farming of certain substances having a hormonal action. Off J L 382, pp. 228–231. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1449151085370&uri=CELEX:31985L0649.

  10. Pacáková V, Loukotková L, Bosáková Z, Štulík K. Analysis for estrogens as environmental pollutants—a review. J Sep Sci. 2009;32:867–82. doi:10.1002/jssc.200800673.

    Google Scholar 

  11. Laganá A, Fago G, Marino A, Santarelli D. Development of an analytical system for the simultaneous determination of anabolic macrocyclic lactones in aquatic environmental samples. Rapid Commun Mass Spectrom. 2001;15:304–10. doi:10.1002/rcm.223.

    Article  Google Scholar 

  12. Wille K, De Brabander HF, Vanhaecke L, De Wulf E, Van Caeter P, Janssen CR. Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. TrAC Trends Anal Chem. 2012;35:87–108. doi:10.1016/j.trac.2011.12.003.

    Article  CAS  Google Scholar 

  13. Tomšíková H, Aufartová J, Solich P, Nováková L, Sosa-Ferrera Z, Santana-Rodríguez JJ. High-sensitivity analysis of female-steroid hormones in environmental samples. TrAC Trends Anal Chem. 2012;34:35–58. doi:10.1016/j.trac.2011.11.008.

    Article  Google Scholar 

  14. Ríos A, Zougagh M, Bouri M. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods. 2013;5:4558–73. doi:10.1039/C3AY40306H.

    Article  Google Scholar 

  15. Ding J, Gao Q, Li X-S, Huang W, Shi Z-G, Feng Y-Q. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. J Sep Sci. 2011;34:2498–504. doi:10.1002/jssc.201100323.

    Article  CAS  Google Scholar 

  16. Socas-Rodríguez B, Hernández-Borges J, Salazar P, Martín M, Rodríguez-Delgado MÁ. Core-shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid-phase extraction for the determination of estrogenic compounds in water samples prior to high-performance liquid chromatography-mass spectrometry analysis. J Chromatogr A. 2015;1397:1–10. doi:10.1016/j.chroma.2015.04.010.

    Article  Google Scholar 

  17. Pérez RA, Albero B, Tadeo JL, Molero E, Sánchez-Brunete C. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2015;407:1913–24. doi:10.1007/s00216-014-8409-0.

    Article  Google Scholar 

  18. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30. doi:10.1126/science.1147241.

    Article  CAS  Google Scholar 

  19. Wang X, Deng C. Preparation of C18-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples. Talanta. 2016;148:387–92. doi:10.1016/j.talanta.2015.11.008.

    Article  CAS  Google Scholar 

  20. Wang Y, Wang S, Niu H, Ma Y, Zeng T, Cai Y, et al. Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A. 2013;1283:20–6. doi:10.1016/j.chroma.2013.01.110.

    Article  CAS  Google Scholar 

  21. Ma Y, Zhang X, Zeng T, Cao D, Zhou Z, Li W, et al. Polydopamine-coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS. ACS Appl Mater Interfaces. 2013;5:1024–30. doi:10.1021/am3027025.

    Article  CAS  Google Scholar 

  22. McCullum C, Tchounwou P, Ding L-S, Liao X, Liu Y-M. Extraction of Aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. J Agric Food Chem. 2014;62:4261–7. doi:10.1021/jf501659m.

    Article  CAS  Google Scholar 

  23. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30. doi:10.1021/ac020361s.

    Article  CAS  Google Scholar 

  24. Cavaliere C, Capriotti AL, Foglia P, Piovesana S, Samperi R, Ventura S, et al. Natural estrogens in dairy products: determination of free and conjugated forms by ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci. 2015;38:3599–606. doi:10.1002/jssc.201500549.

    Article  CAS  Google Scholar 

  25. Capriotti AL, Cavaliere C, Piovesana S, Stampachiacchiere S, Samperi R, Ventura S, et al. Simultaneous determination of naturally occurring estrogens and mycoestrogens in milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry analysis. J Agric Food Chem. 2015;63:8940–6. doi:10.1021/acs.jafc.5b02815.

    Article  CAS  Google Scholar 

  26. Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, et al. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater. 2014;270:27–34. doi:10.1016/j.jhazmat.2014.01.039.

    Article  CAS  Google Scholar 

  27. Nematollahzadeh A, Shojaei A, Abdekhodaie MJ, Sellergren B. Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column. J Colloid Interface Sci. 2013;404:117–26. doi:10.1016/j.jcis.2013.04.004.

    Article  CAS  Google Scholar 

  28. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, et al. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J. 2015;259:53–61. doi:10.1016/j.cej.2014.07.101.

    Article  CAS  Google Scholar 

  29. Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Samperi R, Ventura S, et al. Phosphopeptide enrichment: development of magnetic solid phase extraction method based on polydopamine coating and Ti4+-IMAC. Anal Chim Acta. 2016;909:67–74. doi:10.1016/j.aca.2016.01.008.

    Article  CAS  Google Scholar 

  30. Chai W, Wang H, Zhang Y, Ding G. Preparation of polydopamine-coated magnetic nanoparticles for dispersive solid-phase extraction of water-soluble synthetic colorants in beverage samples with HPLC analysis. Talanta. 2016;149:13–20. doi:10.1016/j.talanta.2015.11.026.

    Article  CAS  Google Scholar 

  31. Shi H-L, Peng S-L, Sun J, Liu Y-M, Zhu Y-T, Qing L-S, et al. Selective extraction of berberine from Cortex Phellodendri using polydopamine-coated magnetic nanoparticles. J Sep Sci. 2014;37:704–10. doi:10.1002/jssc.201301294.

    Article  CAS  Google Scholar 

  32. Serrano AB, Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Ventura S, et al. Development of a rapid LC-MS/MS method for the determination of emerging Fusarium mycotoxins enniatins and beauvericin in human biological fluids. Toxins. 2015;7:3554–71. doi:10.3390/toxins7093554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Cavaliere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capriotti, A.L., Cavaliere, C., La Barbera, G. et al. Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination. Anal Bioanal Chem 408, 4011–4020 (2016). https://doi.org/10.1007/s00216-016-9489-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9489-9

Keywords

Navigation