Log in

Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel enzyme-linked aptamer assay (ELAA) with the aid of Exonuclease I (Exo I) for colorimetric detection of small molecules was developed. The fluorescein isothiocyanate (FITC)-labeled aptamer was integrated into a double-stranded DNA (dsDNA). In the presence of target, the binding of aptamer with target protected the aptamer from Exo I degradation, which resulted in the FITC tag remaining on the aptamer. Then, the anti-FITC-HRP conjugate was used to produce an optically observable signal. By monitoring the color change, we were able to detect two model molecules, ATP and L-argininamide, with high selectivity and high sensitivity even in the serum matrix. It is expected to be a simple and general ELAA method with wide applicability.

Sensing strategy for exonuclease I-aided enzyme-linked aptamer assay

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tortorano AM, Esposto MC, Prigitano A, Grancini A, Ossi C, Cavanna C, Cascio GL (2012) Cross-reactivity of Fusarium spp. in the Aspergillus galactomannan enzyme-linked immunosorbent assay. J Clin Microbiol 50:1051–1053

    Article  Google Scholar 

  2. Liao ND, Lee WY (2012) Detection of carbonic anhydrase IX protein in the diagnosis of malignant pleural effusion by enzyme-linked immunosorbent assay and immunocytochemistry. Cancer Cytopathol 120(4):269–275

    Article  CAS  Google Scholar 

  3. Sapir A, Shalev AH, Skalka N, Bronshtein A, Altstein M (2013) Development of an enzyme-linked immunosorbent assay and a beta-I adrenergic receptor-based assay for monitoring the drug atenolol. Environ Toxicol Chem 32(3):585–593

    Article  CAS  Google Scholar 

  4. Irenge LM, Gala JL (2012) Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biotechnol 93:1411–1422

    Article  CAS  Google Scholar 

  5. Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57

    Article  CAS  Google Scholar 

  6. Yang CJ, Jockusch S, Vicens M, Turroand NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci U S A 102(48):17278–17283

    Article  CAS  Google Scholar 

  7. Tan X, Chen T, **ong X, Mao Y, Zhu G, Yasun E, Li C, Zhu Z, Tan W (2012) Semiquantification of ATP in Live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. Anal Chem 84(20):8622–8627

    Article  CAS  Google Scholar 

  8. Wang Y, Bao L, Liu Z, Pang D (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83(21):8130–8137

    Article  CAS  Google Scholar 

  9. Luo F, Zheng L, Chen S, Cai Q, Lin Z, Qiu B, Chen G (2012) An aptamer-based fluorescence biosensor for multiplex detection using unmodified gold nanoparticles. Chem Commun 48:6387–6389

    Article  CAS  Google Scholar 

  10. Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang CJ, Tan W (2010) An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem 122(6):1070–1074

    Article  Google Scholar 

  11. Li J, Fu HE, Wu LJ, Zheng AX, Chen GN, Yang HH (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315

    Article  CAS  Google Scholar 

  12. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun : 3735–3737

  13. **a F, Zuo X, Yang R, **ao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841

    Article  CAS  Google Scholar 

  14. **ao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127(51):17990–17991

    Article  CAS  Google Scholar 

  15. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129(5):1042–1043

    Article  CAS  Google Scholar 

  16. Li B, Du Y, Wei H, Dong S (2007) Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem Commun: 3780–3782

  17. Yin BC, Guan YM, Ye BC (2012) An ultrasensitive electrochemical DNA sensor based on the ssDNA-assisted cascade of hybridization reaction. Chem Commun 48:4208–4210

    Article  CAS  Google Scholar 

  18. Huang H, Tan Y, Shi J, Liang G, Zhu JJ (2010) DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2:606–612

    Article  CAS  Google Scholar 

  19. Lin Z, Luo F, Liu Q, Chen L, Qiu B, Cai Z, Chen G (2011) Signal-on electrochemiluminescent biosensor for ATP based on the recombination of aptamer chip. Chem Commun 47:8064–8066

    Article  CAS  Google Scholar 

  20. Baldrich E, Acero JL, Reekmans G, Laureyn W, O’ Sullivan CK (2005) Displacement enzyme linked aptamer assay. Anal Chem 77(15):4774–4784

    Article  CAS  Google Scholar 

  21. Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, Ruaan RC, Chen WY (2008) Preparation of a DNA aptamer—Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem 80(17):6580–6586

    Article  CAS  Google Scholar 

  22. Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84(14):6104–6109

    Article  CAS  Google Scholar 

  23. Nie J, Deng Y, Deng QP, Zhang DW, Zhang XX, Zhou YL (2013) A self-assemble aptamer fragment/target complex based high-throughput colorimetric aptasensor using enzyme linked aptamer assay. Talanta 106:309–314

    Article  CAS  Google Scholar 

  24. Park H, Paeng IR (2011) Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Anal Chim Acta 685(1):65–73

    Article  CAS  Google Scholar 

  25. Barthelmebs L, Jonca J, Prieto-Simon B, Marty JL (2011) Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Control 22(5):737–743

    Article  CAS  Google Scholar 

  26. Yuan M, Zhu Y, Lou X, Chen C, Wei G, Lan M, Zhao J (2012) Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I. Biosens Bioelectron 31(1):330–336

    Article  CAS  Google Scholar 

  27. Zheng D, Zou R, Lou X (2012) Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Anal Chem 84(8):3554–3560

    Article  CAS  Google Scholar 

  28. Jiang B, Wang M, Li C, **e J (2013) Label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron transfer of hemin. Biosens Bioelectron 43:289–392

    Article  CAS  Google Scholar 

  29. Wang XL, Li F, Su YH, Sun X, Li XB, Schluesener HJ, Tang F, Xu SQ (2004) Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Anal Chem 76(19):5605–5610

    Article  CAS  Google Scholar 

  30. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2):656–665

    Article  CAS  Google Scholar 

  31. Kong L, Xu J, Xu Y, **ang Y, Yuan R, Chai Y (2013) A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR green I dye. Biosens Bioelectron 42:193–197

    Article  CAS  Google Scholar 

  32. He X, Li Z, Jia X, Wang K, Yin J (2013) A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta 111:105–110

    Article  CAS  Google Scholar 

  33. Zhou Z, Du Y, Dong S (2011) Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal Chem 83(13):5122–5127

    Article  CAS  Google Scholar 

  34. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946

    Article  CAS  Google Scholar 

  35. Liu X, Freeman R, Golub E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5(9):7648–7655

    Article  CAS  Google Scholar 

  36. Cruz-Aguado JA, Chen Y, Zhang Z, Elowe NH, Brook MA, Brennan JD (2004) Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol–gel-derived silica. JAM CHEM SOC 2004(126):6878–6879

    Article  CAS  Google Scholar 

  37. Ozaki H, Nishihira A, Wakabayashi M, Kuwahara M, Sawai H (2006) Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg Med Chem Lett 16(16):4381–4384

    Article  CAS  Google Scholar 

  38. Zhu Z, Yang C, Zhou X, Qin J (2011) Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes. Chem Commun 47:3192–3194

    Article  CAS  Google Scholar 

  39. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181

    Article  CAS  Google Scholar 

  40. Mei H, Bing T, Yang X, Qi C, Chang T, Liu X, Cao Z, Shangguan D (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84(17):7323–7329

    Article  CAS  Google Scholar 

  41. Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548

    Article  CAS  Google Scholar 

  42. Kato T, Takemura T, Yano K, Ikebukuro K, Karube I (2000) In vitro selection of DNA aptamers which bind to cholic acid. Biochim Biophys Acta 1493(1–2):12–18

    Article  CAS  Google Scholar 

  43. Qi C, Bing T, Mei H, Yang X, Liu X, Shangguan D (2013) G-quadruplex DNA aptamers for zeatin recognizing. Biosens Bioelectron 41:157–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (2011C91101, 2013CB933701), NSFC (no. 21127901, 21121063), and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aohong Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Zhang, Z., Xu, L. et al. Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection. Anal Bioanal Chem 406, 2949–2955 (2014). https://doi.org/10.1007/s00216-014-7705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7705-z

Keywords

Navigation