Log in

Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Owing to their favorable porous structure with pore size distribution shifted towards large flow-through pores, organic polymer monoliths have been mainly employed for the separation of macromolecules in gradient elution liquid chromatography. The absence of significant amounts of small pores with a stagnant mobile phase and the resulting low surface area were considered as the main reason for their poor behavior in the isocratic separation of small molecules. Several recent efforts have improved the separation power of organic polymer monoliths for small molecules offering column efficiency up to tens of thousands of plates per meter. These attempts include optimization of the composition of polymerization mixture, including the variation of functional monomer, the cross-linking monomer, and the porogen solvents mixture, adjustment of polymerization temperature, and time. Additionally, post-polymerization modifications including hypercross-linking and the use of carbon nanostructures showed significant improvement in the column properties. This review describes recent developments in the preparation of organic polymer monoliths suitable for the separation of small molecules in the isocratic mode as well as the main factors affecting the column efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hjerten S, Liao JL, Zhang R (1989) J Chromatogr 473(1):273–275

    CAS  Google Scholar 

  2. Tennikova TB, Belenkii BG, Svec F (1990) J Liq Chromatogr 13(1):63–70

    Article  CAS  Google Scholar 

  3. Svec F, Frechet JMJ (1992) Anal Chem 64(7):820–822

    Article  CAS  Google Scholar 

  4. Viklund C, Svec F, Frechet JMJ, Irgum K (1996) Chem Mater 8(3):744–750

    Article  CAS  Google Scholar 

  5. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Anal Chem 68(19):3498–3501

    Article  CAS  Google Scholar 

  6. Jandera P, Urban J (2008) J Sep Sci 31(14):2521–2540

    Article  Google Scholar 

  7. Svec F, Huber CG (2006) Anal Chem 78(7):2100–2107

    Article  CAS  Google Scholar 

  8. Buchmeiser MR (2007) Polymer 48(8):2187–2198

    Article  CAS  Google Scholar 

  9. Guiochon G (2007) J Chromatogr A 1168(1–2):101–168

    CAS  Google Scholar 

  10. Urban J, Svec F, Frechet JMJ (2010) J Chromatogr A 1217(52):8212–8221

    Article  CAS  Google Scholar 

  11. Svec F (2010) J Chromatogr A 1217(6):902–924

    Article  CAS  Google Scholar 

  12. Svec F, Frechet JMJ (1995) Chem Mater 7(4):707–715

    Article  CAS  Google Scholar 

  13. Urban J, Moravcova D, Jandera P (2006) J Sep Sci 29(8):1064–1073

    Article  CAS  Google Scholar 

  14. Urban J, Jandera P, Schoenmakers P (2007) J Chromatogr A 1150(1–2):279–289

    CAS  Google Scholar 

  15. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1997) J Chromatogr A 762(1–2):135–146

    CAS  Google Scholar 

  16. Janco M, Sykora D, Svec F, Frechet JMJ, Schweer J, Holm R (2000) J Polym Sci Pol Chem 38(15):2767–2778

    Article  CAS  Google Scholar 

  17. Urban J, Eeltink S, Jandera P, Schoenmakers PJ (2008) J Chromatogr A 1182(2):161–168

    Article  CAS  Google Scholar 

  18. Nischang I, Teasdale I, Bruggemann O (2011) Anal Bioanal Chem 400(8):2289–2304

    Article  CAS  Google Scholar 

  19. Svec F (2012) J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  20. Eeltink S, Herrero-Martinez JM, Rozing GP, Schoenmakers PJ, Kok WT (2005) Anal Chem 77(22):7342–7347

    Article  CAS  Google Scholar 

  21. Ueki Y, Umemura T, Iwashita Y, Odake T, Haraguchi H, Tsunoda K (2006) J Chromatogr A 1106(1–2):106–111

    CAS  Google Scholar 

  22. Umemura T, Ueki Y, Tsunoda K, Katakai A, Tamada M, Haraguchi H (2006) Anal Bioanal Chem 386(3):566–571

    Article  CAS  Google Scholar 

  23. Huang XJ, Wang QQ, Yan H, Huang Y, Huang BL (2005) J Chromatogr A 1062(2):183–188

    Article  CAS  Google Scholar 

  24. Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2007) J Biochem Biophys Methods 70(1):39–45

    Article  CAS  Google Scholar 

  25. Buszewski B, Szumski M (2004) Chromatographia 60:S261–S267

    Article  CAS  Google Scholar 

  26. Moravcova D, Jandera P, Urban J, Planeta J (2003) J Sep Sci 26(11):1005–1016

    Article  CAS  Google Scholar 

  27. Coufal P, Cihak M, Suchankova J, Tesarova E, Bosakova Z, Stulik K (2002) J Chromatogr A 946(1–2):99–106

    CAS  Google Scholar 

  28. Eeltink S, Geiser L, Svec F, Frechet JMJ (2007) J Sep Sci 30(17):2814–2820

    Article  CAS  Google Scholar 

  29. Urban J, Jandera P, Langmaier P (2011) J Sep Sci 34(16–17):2054–2062

    CAS  Google Scholar 

  30. Svobodova A, Krizek T, Sirc J, Salek P, Tesarova E, Coufal P, Stulik K (2011) J Chromatogr A 1218(11):1544–1547

    Article  CAS  Google Scholar 

  31. Smirnov KN, Dyatchkov IA, Telnov MV, Pirogov AV, Shpigun OA (2011) J Chromatogr A 1218(30):5010–5019

    Article  CAS  Google Scholar 

  32. Courtois J, Byström E, Irgum K (2006) Polymer 47(8):2603–2611

    Article  CAS  Google Scholar 

  33. Xu ZD, Yang LM, Wang QQ (2009) J Chromatogr A 1216(15):3098–3106

    Article  CAS  Google Scholar 

  34. Kanamori K, Nakanishi K, Hanada T (2006) Adv Mater 18(18):2407–2411

    Article  CAS  Google Scholar 

  35. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Macromolecules 42(4):1270–1277

    Article  CAS  Google Scholar 

  36. Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N (2006) J Chromatogr A 1119(1–2):66–79

    CAS  Google Scholar 

  37. Kubo T, Kimura N, Hosoya K, Kaya K (2007) J Polym Sci Pol Chem 45(17):3811–3817

    Article  CAS  Google Scholar 

  38. Li Y, Tolley HD, Lee ML (2009) Anal Chem 81(11):4406–4413

    Article  CAS  Google Scholar 

  39. Sinitsyna ES, Sergeeva YN, Vlakh EG, Saprikina NN, Tennikova TB (2009) React Funct Polym 69(6):385–392

    Article  CAS  Google Scholar 

  40. Sinitsyna ES, Vlakh EG, Rober MY, Tennikova TB (2011) Polymer 52(10):2132–2140

    Article  CAS  Google Scholar 

  41. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Macromol Rapid Commun 30(12):986–990

    Article  CAS  Google Scholar 

  42. Wu ZW, Frederic KJ, Talarico M, De Keel D (2009) Can J Chem Eng 87(4):579–583

    Article  CAS  Google Scholar 

  43. Lubbad SH, Buchmeiser MR (2010) J Chromatogr A 1217(19):3223–3230

    Article  CAS  Google Scholar 

  44. Li YY, Tolley HD, Lee ML (2011) J Chromatogr A 1218(10):1399–1408

    Article  CAS  Google Scholar 

  45. Li YY, Tolley HD, Lee ML (2010) J Chromatogr A 1217(30):4934–4945

    Article  CAS  Google Scholar 

  46. Greiderer A, Trojer L, Huck CW, Bonn GK (2009) J Chromatogr A 1216(45):7747–7754

    Article  CAS  Google Scholar 

  47. Trojer L, Bisjak CP, Wieder W, Bonn GK (2009) J Chromatogr A 1216(35):6303–6309

    Article  CAS  Google Scholar 

  48. Hosoya K, Hira N, Yamamoto K, Nishimura M, Tanaka N (2006) Anal Chem 78(16):5729–5735

    Article  CAS  Google Scholar 

  49. Holdšvendová P, Suchánková J, Bunček M, Bačkovská V, Coufal P (2007) J Biochem Biophys Methods 70(1):23–29

    Article  Google Scholar 

  50. Xu M, Peterson DS, Rohr T, Svec F, Fréchet JMJ (2003) Anal Chem 75(4):1011–1021

    Article  CAS  Google Scholar 

  51. Viklund C, Sjögren A, Irgum K, Nes I (2000) Anal Chem 73(3):444–452

    Article  Google Scholar 

  52. Jiang Z, Smith NW, Ferguson PD, Taylor MR (2006) Anal Chem 79(3):1243–1250

    Article  Google Scholar 

  53. Urban J, Skerikova V, Jandera P, Kubickova R, Pospisilova M (2009) J Sep Sci 32(15–16):2530–2543

    Article  CAS  Google Scholar 

  54. Škeříková V, Jandera P (2010) J Chromatogr A 1217(51):7981–7989

    Article  Google Scholar 

  55. Stankova M, Jandera P, Urban J, Skerikova V in preparation

  56. Svec F, Frechet JMJ (1995) Macromolecules 28(22):7580–7582

    Article  CAS  Google Scholar 

  57. Szumski M, Buszewski B (2009) J Sep Sci 32(15–16):2574–2581

    Article  CAS  Google Scholar 

  58. Hirano T, Kitagawa S, Ohtani H (2009) Anal Sci 25(9):1107–1113

    Article  CAS  Google Scholar 

  59. Viklund C, Nordstrom A, Irgum K, Svec F, Frechet JMJ (2001) Macromolecules 34(13):4361–4369

    Article  CAS  Google Scholar 

  60. Nischang I, Bruggemann O (2010) J Chromatogr A 1217(33):5389–5397

    Article  CAS  Google Scholar 

  61. Nischang I, Teasdale I, Bruggemann O (2010) J Chromatogr A 1217(48):7514–7522

    Article  CAS  Google Scholar 

  62. Jerabek K (1985) Anal Chem 57(8):1598–1602

    Article  CAS  Google Scholar 

  63. Huo Y, Schoenmakers PJ, Kok WT (2007) J Chromatogr A 1175(1):81–88

    Article  CAS  Google Scholar 

  64. Davankov VA, Rogozhin SV, Tsyurupa MP (1971) US. Patent 3,729,457

  65. Urban J, Svec F, Frechet JMJ (2010) Anal Chem 82(5):1621–1623

    Article  CAS  Google Scholar 

  66. Guiochon G, Gritti F (2011) J Chromatogr A 1218(15):1915–1938

    Article  CAS  Google Scholar 

  67. Teisseyre TZ, Urban J, Halpern-Manners NW, Chambers SD, Bajaj VS, Svec F, Pines A (2011) Anal Chem 83(15):6004–6010

    Article  CAS  Google Scholar 

  68. Bowers LD, Pedigo S (1986) J Chromatogr 371:243–251

    Article  CAS  Google Scholar 

  69. Kucerova Z, Szumski M, Buszewski B, Jandera P (2007) J Sep Sci 30(17):3018–3026

    Article  CAS  Google Scholar 

  70. Li Y, Chen Y, **ang R, Ciuparu D, Pfefferle LD, Horváth C, Wilkins JA (2005) Anal Chem 77(5):1398–1406

    Article  CAS  Google Scholar 

  71. Chambers SD, Svec F, Frechet JMJ (2011) J Chromatogr A 1218(18):2546–2552

    Article  CAS  Google Scholar 

  72. Chambers SD, Holcombe TW, Svec F, Fréchet JMJ (2011) Anal Chem 83(24):9478–9484

    Article  CAS  Google Scholar 

  73. Jandera P, Urban J, Skerikova V, Langmaier P, Kubickova R, Planeta J (2010) J Chromatogr A 1217(1):22–33

    Article  CAS  Google Scholar 

  74. Hara T, Mascotto S, Weidmann C, Smarsly BM (2011) J Chromatogr A 1218(23):3624–3635

    Article  CAS  Google Scholar 

  75. Jandera P, Moravcova D, Urban J, Planeta J (2004) J Sep Sci 27(10–11):789–800

    Google Scholar 

Download references

Acknowledgments

Financial support by Grant Agency of Czech Republic projects P206/12/0398 and P206/12/P049 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Jandera.

Additional information

Published in the topical collection Monolithic Columns in Liquid Phase Separations with guest editor Luis A. Colon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, J., Jandera, P. Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Anal Bioanal Chem 405, 2123–2131 (2013). https://doi.org/10.1007/s00216-012-6392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6392-x

Keywords

Navigation