Log in

Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mercury is one of the most toxic heavy metals present in the environment. In this study, a highly sensitive and specific monoclonal antibody (mAb)-based indirect competitive enzyme-linked immunosorbent assay (ELISA) for the determination of Hg2+ was developed. A new bifunctional ligand, 6-mercaptonicotinic acid (MNA), which contains a pyridine ring bearing a carboxylic group and a mercapto group, was selected for the preparation of immunogen. After immunization of mice and performing the hybridoma technique, the obtained mAb was characterized for its binding affinity and selectivity for Hg2+. Based on this novel mAb, an ELISA was established. At optimal experimental conditions, the standard curve of the ELISA for Hg2+ was constructed in concentration range of 0.1–100 ng mL−1. The values of IC50 and LOD of the assay were found to be 1.12 and 0.08 ng mL−1. The cross-reactivity was lower than 2 % with MNA, CH3Hg, and CH3Hg-MNA and was 11.5 % and 4.4 % for Hg+ and Au3+, respectively. No cross-reactivity was found with other metal ions such as Cu2+, Sn2+, Ni2+, Mn2+, Pb2+, Zn2+, Cd2+, Fe2+, Co2+, Mg2+, Ca2+, and anions such as Cl, NO 3 , NO 2 , HCO 3 , F, and SO 2−4 , indicating that the assay displays not only high sensitivity but also high selectivity. Different kinds of samples including water, milk, green vegetable, kelp, facial cleanser, and night cream were spiked with Hg2+ and the extracts were analyzed by ELISA. Acceptable recovery rates of 80.0–113.0 % and coefficients of variation of 1.9–18.6 % were obtained. A linear relationship between ELISA and cold-vapor atomic fluorescence spectroscopy (CV-AFS) as indicated by a correlation coefficient of 0.97 for liquid samples (water samples) and 0.98 for other samples was obtained. The proposed mAb-based ELISA provides a feasible analytical method for highly sensitive and specific, fast, simple, and accurate determination of uncomplexed trace Hg2+ in environmental and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rubio C, Gonzalez-Iglesias T, Revert C, Reguera JI, Gutierrez AJ, Hardisson A (2005) Lead dietary intake in a Spanish population (Canary Islands). J Agric Food Chem 53(16):6543–6549

    Article  CAS  Google Scholar 

  2. Ireland MP (1991) Heavy metal sources—uptake and distribution. In: Dillon HK, Ho MH (eds) Biological monitoring of heavy metals. Wiley, New York, p 263

    Google Scholar 

  3. Orihel DM, Paterson MJ, Blanchfield PJ, Bodaly RA, Hintelmann H (2007) Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environ Sci Technol 41(14):4952–4958

    Article  CAS  Google Scholar 

  4. Mason RP, Morel FMM, Hemond HF (1995) The role of microorganisms in elemental mercury formation in natural waters. Water Air Soil Pollut 80(1–4):775–787

    Article  CAS  Google Scholar 

  5. Holmes P, James KAF, Levy LS (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408(2):171–182

    Article  CAS  Google Scholar 

  6. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301(5637):1203–1203

    Article  Google Scholar 

  7. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737

    Article  CAS  Google Scholar 

  8. Diez GC, Martinez R, Ratera I, Tarraga A, Molina P, Veciana J (2008) Nanocomposite membranes as highly selective and sensitive mercury(II) detectors. J Mater Chem 18(17):1997–2002

    Article  Google Scholar 

  9. Takahashi Y, Danwittayakul S, Suzuki TM (2009) Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg (II) ion. Analyst 134(7):1380–1385

    Article  CAS  Google Scholar 

  10. Zhang WB, Su ZF, Chu XF, Yang XA (2010) Evaluation of a new electrolytic cold vapor generation system for mercury determination by AFS. Talanta 80(5):2106–2112

    Article  CAS  Google Scholar 

  11. Li X, Wang ZH (2007) Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry. Anal Chim Acta 588(2):179–183

    Article  CAS  Google Scholar 

  12. Liu QY (2010) Determination of mercury and methylmercury in seafood by ion chromatography using photo-induced chemical vapor generation atomic fluorescence spectrometric detection. Microchem J 95(2):255–258

    Article  CAS  Google Scholar 

  13. Jiang XJ, Gan WE, Wan LZ, Zhang HC, He YZ (2010) Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode. Spectrochim Acta B 65(2):171–175

    Article  Google Scholar 

  14. Shah AQ, Kazi TG, Baig JA, Afridi HI, Kandhro GA, Arain MB, Kolachi NF, Wadhwa SK (2010) Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry. Food Chem Toxicol 48(1):65–69

    Article  CAS  Google Scholar 

  15. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108(9):3443–3480

    Article  CAS  Google Scholar 

  16. Li HW, Wang B, Dang YQ, Li L, Wu YQ (2010) A highly selective fluorescent sensor for mercury ions in aqueous solution: detection based on target-induced aggregation. Sensors Actuators B 148(1):49–53

    Article  Google Scholar 

  17. Zhan XQ, Qian ZH, Zheng H, Su BY, Lan Z, Xu JG (2008) Rhodamine thiospirolactone highly selective and sensitive reversible sensing of Hg (II). Chem Commun 16:1859–1861

    Article  Google Scholar 

  18. Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric Ions. Angew Chem Int Ed 47(23):4346–4350

    Article  CAS  Google Scholar 

  19. Zhu ZQ, Su YY, Li J, Li D, Zhang J, Song SP, Zhao Y, Li GX, Fan CH (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81(18):7660–7666

    Article  CAS  Google Scholar 

  20. Wang J, Liu B (2008) Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Commun 39:4759–4761

    Article  Google Scholar 

  21. Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82(22):9194–9200

    Article  CAS  Google Scholar 

  22. Liu DB, Qu WS, Chen WW, Zhang W, Wang Z, Jiang XY (2010) Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 82(23):9606–9610

    Article  CAS  Google Scholar 

  23. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837

    Article  CAS  Google Scholar 

  24. Li XJ, Du AF, Cai WM, Hou YH, Pang LH, Gao X (2007) Evaluation of a recombinant excretory secretory Haemonchus contortus protein for use in a diagnostic enzyme-linked immunosorbent assay. Exp Parasitol 115(3):242–246

    Article  CAS  Google Scholar 

  25. Li ZL, Wang S, Lee NA, Allan RD, Kennedy IR (2004) Development of a solid-phase extraction-enzyme-linked immunosorbent assay method for the determination of estrone in water. Anal Chim Acta 503(2):171–177

    Article  CAS  Google Scholar 

  26. Deng AP, Kolar V, Franek M (2002) Direct competitive ELISA for the determination of polychlorinated biphenyls in soil samples. Anal Bioanal Chem 373(8):685–690

    Article  CAS  Google Scholar 

  27. Deng AP, Himmelsbach M, Zhu QZ, Frey S, Sengl M, Buchberger W, Niessner R, Knopp D (2003) Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. Environ Sci Technol 37(15):3422–3429

    Article  CAS  Google Scholar 

  28. Wylie DE, Carlson LD, Carlson R, Wagner FW, Schuster SM (1991) Detection of mercuric ions in water by ELISA with a mercury-specific antibody. Anal Biochem 194(2):381–387

    Article  CAS  Google Scholar 

  29. Darwish IA, Blake DA (2001) One-step competitive immunoassay for cadmium ions: development and validation for environmental water samples. Anal Chem 73(8):1889–1895

    Article  CAS  Google Scholar 

  30. Khosraviani M, Pavlov RR, Flowers GC, Blake DA (1998) Detection of heavy metals by immunoassay: optimization and validation of a rapid, portable assay for ionic cadmium. Environ Sci Technol 32(1):137–142

    Article  CAS  Google Scholar 

  31. Johnson DK, Combs SM, Parsen JD, Jolley ME (2002) Lead analysis by anti-chelate fluorescence polarization immunoassay. Environ Sci Technol 36(5):1042–1047

    Article  CAS  Google Scholar 

  32. **ang JJ, Zhai YF, Tang Y, Wang H, Liu B, Guo CW (2010) A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead-DTPA complex. Environ Pollut 158(5):1376–1380

    Article  CAS  Google Scholar 

  33. Sasaki K, Oguma S, Namiki Y, Ohmura N (2009) Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. Anal Chem 81(10):4005–4009

    Article  CAS  Google Scholar 

  34. Blake DA, Pavlov AR, Yu HN, Kohsraviani M, Ensley HE, Blake RC II (2001) Antibodies and antibody-based assays for hexavalent uranium. Anal Chim Acta 444(1):3–11

    Article  CAS  Google Scholar 

  35. Blake RC II, Pavlov AR, Khosraviani M, Ensley HE, Kiefer XGE, Yu HN, Li X, Blake DA (2004) Novel monoclonal antibodies with specificity for chelated uranium(VI): isolation and binding properties. Bioconjug Chem 15(5):1125–1136

    Article  CAS  Google Scholar 

  36. Marx A, Hock B (1998) Characterization of a new monoclonal antibody against mercury (II). Anal Lett 31(10):1633–1650

    Article  CAS  Google Scholar 

  37. Wylie DE, Lu D, Carlson LD, Carlson R, Babacan KF, Schuster SM, Wagner FW (1992) Monoclonal antibodies specific for mercuric ions. Proc Natl Acad Sci USA 89(9):4104–4108

    Article  CAS  Google Scholar 

  38. He H, Wu F, Xu MJ, Yang SG, Sun C, Yang YH (2011) Development and validation of a competitive indirect enzyme-linked immunosorbent assay for the determination of mercury in aqueous solution. Anal Methods 3(8):1859–1864

    Article  CAS  Google Scholar 

  39. Zhao L, Wang FL, Yang H, Li P, Liu MX, Li X (2010) Preparation and characterization of specific monoclonal antibodies against mercury ions. Chin J Biotechnol 26(6):753–759

    Google Scholar 

  40. Marx A, Hock B (2000) Monoclonal antibody-based enzyme immunoassay for mercury(II) determination. Methods 22(1):49–52

    Article  CAS  Google Scholar 

  41. Knopp D (2006) Detection of trace metal ions in environmental matrices by immunological methods a review. Ecol Chem Eng 13:383–397

    CAS  Google Scholar 

  42. **e P, Tao X, Xu W, Fan LY, Zhang W, Zhi YE, Zhou P, Cao CX (2010) Mercuric mercaptide of penicillenic acid, a novel hapten for relevant immunoassay, synthesized from penicillin. J Immunol Methods 353(1–2):1–7

    Article  CAS  Google Scholar 

  43. Sasaki K, Yongvongsoontorn N, Tawarada K, Ohnishi Y, Arakane T, Kayama F, Abe K, Oguma X, Ohmura N (2009) Cadmium purification and quantification using immunochromatography. J Agric Food Chem 57(11):4514–4519

    Article  CAS  Google Scholar 

  44. Tang Y, Zhai YF, **ang JJ, Wang H, Liu B, Guo CW (2010) Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples. Environ Pollut 158(6):2074–2077

    Article  CAS  Google Scholar 

  45. Zhou Y, Zhang YY, Pan FG, Li YS, Lu SY, Ren HL, Shen QF, Li ZH, Zhang JH, Chen QJ, Liu ZS (2010) A competitive immunochromatographic assay based on a novel probe for the detection of mercury (II) ions in water samples. Biosens Bioelectron 25(11):2534–2538

    Article  CAS  Google Scholar 

  46. Diane A, Blake RC, Blake MK II, Pavlov AR (1998) Immunoassays for metal ions. Anal Chim Acta 376(1):13–19

    Article  Google Scholar 

  47. Song J, Wang RM, Wang YQ, Tang YR, Deng AP (2010) Hapten design, modification and preparation of artificial antigens. Chin J Anal Chem 38(8):1211–1218

    Article  CAS  Google Scholar 

  48. Huo SM, Yang H, Deng AP (2007) Development and validation of a highly sensitive ELISA for the determination of pharmaceutical indomethacin in water samples. Talanta 73(2):380–386

    Article  CAS  Google Scholar 

  49. Wang YZ, Wei DP, Yang H, Yang Y, **ng WW, Li Y, Deng AP (2009) Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta 77(5):1783–1789

    Article  CAS  Google Scholar 

  50. He L, Pu C, Yang H, Zhao D, Deng AP (2009) Development of a polyclonal indirect ELISA with sub-ng g−1 sensitivity for the analysis of clenbuterol in milk, animal feed, and liver samples and a small survey of residues in retail animal products. Food Addit Contam 26(8):1153–1161

    Article  CAS  Google Scholar 

  51. Buchwald BM, Connel GE (1974) Thiol groups of normal human immunoglobulin G. Biochem J 137(2):281–289

    CAS  Google Scholar 

  52. Cockle SA, Young NM (1985) The thiol groups of mouse immunoglobulin A. Biochem J 225(1):113–125

    CAS  Google Scholar 

  53. Anonymus: Council Directive 98/83/EC of 3rd November 1998 on the quality of water intended for human consumption

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC; contract no. 20675054, 20835003, and 21175097) and the Hanns-Seidel-Stiftung e.V., München, for financial support of this study. We thank C. Sternkopf (Institute of Hydrochemistry) for performing the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dietmar Knopp or An** Deng.

Additional information

Published in the topical collection Analytical Challenges in Environmental and Geosciences with guest editor Christian Zwiener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yang, H., Pschenitza, M. et al. Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Anal Bioanal Chem 403, 2519–2528 (2012). https://doi.org/10.1007/s00216-012-6052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6052-1

Keywords

Navigation