Log in

Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A methodology for the extraction and quantification of 16 polycyclic aromatic hydrocarbons (PAHs) based on microwave-assisted extraction coupled with headspace solid-phase microextraction followed by gas chromatography/mass spectroscopy was validated for needles and bark of two pine species (Pinus pinaster Ait. and Pinus pinea L.). The limits of detection were below 0.92 ng g−1 (dry weight) for needles and below 0.43 ng g−1 (dw) for bark. Recovery assays were performed with two sample masses spiked at three levels and the overall mean values were between 70 and 110 % for P. pinaster and 75 and 129 % for P. pinea. In the first species, the increase in sample mass lowered the recoveries slightly for most PAHs, whereas for the second, the recoveries were higher for the needles. Naturally contaminated samples from 4 sites were analysed, with higher levels for urban sites (1,320 and 942 ng g−1 (dw) vs. 272 and 111 ng g−1 (dw) for needles and 696 and 488 ng g−1 (dw) vs. 270 and 103 ng g−1 (dw) for bark) than for rural ones and also for P. pinaster samples over P. pinea. It is also shown that gas-phase PAHs are predominant in the needles (over 65 % of the total PAHs) and that the incidence for particulate material in bark, reaching 40 % as opposed to a maximum below 20 % for the needles. The method has proved to be fit and improved some of the existing approaches, on the assessment of particulate PAHs and bark levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Augusto F (2002) Antonio Valente ALP. Trends Anal Chem 21:428–438

    Article  CAS  Google Scholar 

  3. Namieśnik J, Bożena Z, Kot-Wasik A, Partyka M, Wasik A (2005) Anal Bioanal Chem 381:279–301

    Article  Google Scholar 

  4. Tang B, Isacsson U (2008) Energy Fuel 22:1425–1438

    Article  CAS  Google Scholar 

  5. Doong R-A, Chang S-M, Sun Y-C (2000) J Chromatogr A 879:177–188

    Article  CAS  Google Scholar 

  6. Psillakis E, Ntelekos A, Mantzavinos D, Nikolopoulos E, Kalogerakis N (2003) J Environ Monit 5:135–140

    Article  CAS  Google Scholar 

  7. Li Q, Xu X, Sen-Chun LF, Wang X (2006) Sci China B Chem 49:481–491

    Article  CAS  Google Scholar 

  8. Negrão MR, Alpendurada MF (1998) J Chromatogr A 823:211–218

    Article  Google Scholar 

  9. Herbert P, Silva AL, João MJ, Santos L, Alves A (2006) Anal Bioanal Chem 386:324–331

    Article  CAS  Google Scholar 

  10. Hageman KJ, Mazeas L, Grabanski CB, Miller DJ, Hawthorne SB (1998) Anal Chem 68:3892–3898

    Article  Google Scholar 

  11. Havenga WJ, Rohwer ER (1999) J Chromatogr A 848:279–295

    Article  CAS  Google Scholar 

  12. Pino V, Ayala JH, Afonso AM, González V (2003) Anal Chim Acta 477:81–91

    Article  CAS  Google Scholar 

  13. Zuazagoitia D, Millán E, Garcia-Arrona R (2009) Chromatographia 69:175–178

    Article  CAS  Google Scholar 

  14. Vaz JM (2003) Talanta 60:687–693

    Article  CAS  Google Scholar 

  15. Wei M-C, Chang W-T, Jen J-G (2007) Anal Bioanal Chem 387:999–1005

    Article  CAS  Google Scholar 

  16. Agozzino P, Avellone G, Boscaino G, Miceli S (1999) J Mass Spectrom 34:1383–1384

    Article  CAS  Google Scholar 

  17. Wu C-H, Chen C-L, Huang C-T, Lee M-R, Huang C-M (2004) Anal Lett 37:1373–1384

    Article  CAS  Google Scholar 

  18. Nievas ML, Commendatore MG, Olivera NL, Esteves JL, Bucalá V (2006) Bioresource Technol 97:2280–2290

    Article  CAS  Google Scholar 

  19. Purcaro G, Morrison P, Moret S, Conte LS, Mariott PJ (2007) J Chromatogr A 1161:284–291

    Article  CAS  Google Scholar 

  20. Cam D, Gagni S, Lombardi N, Punin MO (2004) J Chromatogr Sci 42:329–335

    CAS  Google Scholar 

  21. Aguinaga N, Campillo N, Viñas P, Hernández-Córdoba M (2008) Anal Bioanal Chem 391:1419–1424

    Article  CAS  Google Scholar 

  22. Poon K-F, Lam PKS, Lam MHW (1999) Anal Chim Acta 396:303–308

    Article  CAS  Google Scholar 

  23. Waidyanatha S, Zheng Y, Rappaport SM (2003) Chem Biol Interact 145:165–174

    Article  CAS  Google Scholar 

  24. Hellström A, Kylin H, Strachan WMJ, Jensen S (2004) Environ Pollut 128:29–48

    Article  Google Scholar 

  25. Isidorov VA, Vinogorova VT, Rafałowski K (2003) Atmos Environ 37:4645–4650

    Article  CAS  Google Scholar 

  26. Mateus E, Barata RC, Zrostlíková J, Gomes da Silva MDR, Paiva MR (2010) J Chromatogr A 1217:1845–1855

    Article  CAS  Google Scholar 

  27. Simonich S, Hites R (1995) Environ Sci Technol 29:2905–2914

    Article  CAS  Google Scholar 

  28. Harju L, Saarela K-E, Rajander J, Lill J-O, Lindroos A, Heselius S-J (2002) Nucl Instr And Meth B 189:163–167

    Article  CAS  Google Scholar 

  29. Barriada-Pereira M, Concha-Graña E, González-Castro MJ, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D, Fernández-Fernández E (2003) J Chromatogr A 1008:115–122

    Article  CAS  Google Scholar 

  30. Ratola N, Lacorte S, Alves A, Barceló D (2006) J Chromatogr A 1114:198–204

    Article  CAS  Google Scholar 

  31. Wenzel KD, Hubert A, Manz M, Weissflog L, Engewald W, Schüürmann G (1998) Anal Chem 70:4827–4835

    Article  CAS  Google Scholar 

  32. Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valerio F (2005) Environ Pollut 133:293–301

    Article  CAS  Google Scholar 

  33. Ratola N, Lacorte S, Barceló D, Alves A (2009) Talanta 77:1120–1128

    Article  CAS  Google Scholar 

  34. Lehndorff E, Schwark L (2004) Atmos Environ 38:3793–3808

    Article  CAS  Google Scholar 

  35. Tremolada P, Burnett V, Calamari D, Jones KC (1996) Environ Sci Technol 30:3570–3577

    Article  CAS  Google Scholar 

  36. Hubert A, Popp P, Wenzel KD, Engewald W, Schüürmann G (2003) Anal Bioanal Chem 376:53–60

    CAS  Google Scholar 

  37. Ratola N, Alves A, Kalogerakis N, Psillakis E (2008) Anal Chim Acta 618:70–78

    Article  CAS  Google Scholar 

  38. Wang Y, Zhang J, Ding Y, Zhou J, Ni L, Sun C (2009) J Sep Sci 32:3951–3957

    Article  CAS  Google Scholar 

  39. Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley, New York

    Google Scholar 

  40. Di Lella LA, Loppi S, Protano G, Riccobono F (2006) Atmos Environ 40:225–237

    Article  Google Scholar 

  41. Ratola N, Amigo JM, Oliveira MSN, Araújo R, Silva JA, Alves A (2011) Environ Exper Bot 72:339–347

    Article  CAS  Google Scholar 

  42. Wang W, Simonich SLM, Wang W, Giri B, Zhao J, Xue M, Cao J, Lu X, Tao S (2011) Atmos Res 99:197–206

    Article  CAS  Google Scholar 

  43. Boden AR, Reiner EJ (2004) Polycyclic Aromat Compd 24:309–323

    Article  CAS  Google Scholar 

  44. Kylin H, Grimvall E, Oestman C (1994) Environ Sci Technol 28:1320–1324

    Article  CAS  Google Scholar 

  45. Schulz H, Popp P, Huhn G, Stärk H-J, Schüürmann G (1999) Sci Total Environ 232:49–58

    Article  CAS  Google Scholar 

  46. Fradinho DM, Pascoal Neto C, Evtuguin D, Jorge FC, Irle MA, Gil MH, Pedrosa de Jesus J (2002) Ind Crop Prod 16:23–32

    Article  CAS  Google Scholar 

  47. Han JS (1999) In: Proceedings of the 2nd Inter-Regional Conference on Environment- Water, Lausanne—Switzerland, 1–3 September 1999

  48. Meredith ML, Hites RA (1987) Environ Sci Technol 21:709–712

    Article  CAS  Google Scholar 

  49. Ratola N, Amigo JM, Alves A (2010) Arch Environ Contam Toxicol 58:631–647

    Article  CAS  Google Scholar 

  50. Ratola N, Amigo JM, Alves A (2010) Chemosphere 81:1517–1525

    Article  CAS  Google Scholar 

  51. Amigo JM, Ratola N (2011) Alves A 45:5988–5996

    CAS  Google Scholar 

  52. Hwang H-M, Wade TL, Sericano JL (2003) Atmos Environ 37:2259–2267

    Article  CAS  Google Scholar 

  53. Srogi K (2007) Environ Chem Lett 5:169–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Fundação para a Ciência e a Tecnologia (Portugal) for the post-doctoral grant SFRH/BPD/67088/2009 and the project PTDC/AGR-CFL/102597/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Ratola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratola, N., Herbert, P. & Alves, A. Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees. Anal Bioanal Chem 403, 1761–1769 (2012). https://doi.org/10.1007/s00216-012-5962-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5962-2

Keywords

Navigation