Log in

Reaction of β-blockers and β-agonist pharmaceuticals with aqueous chlorine. Investigation of kinetics and by-products by liquid chromatography quadrupole time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The degradation of two β-blockers (atenolol and propranolol) and one β-receptor agonist (salbutamol) during water chlorination was investigated by liquid chromatography–mass spectrometry (LC-MS). An accurate-mass quadrupole time-of-flight system (QTOF) was used to follow the time course of the pharmaceuticals and also used in the identification of the by-products. The degradation kinetics of these drugs was investigated at different concentrations of chlorine, bromide and sample pH by means of a Box–Behnken experimental design. Depending on these factors, dissipation half-lives varied in the ranges 68–145 h for atenolol, 1.3–33 min for salbutamol and 42–8362 min for propranolol. Normally, an increase in chlorine dosage and pH resulted in faster degradation of these pharmaceuticals. Moreover, the presence of bromide in water samples also resulted in a faster transformation of atenolol at low chlorine doses. The use of an accurate-mass high-resolution LC-QTOF-MS system permitted the identification of a total of 14 by-products. The transformation pathway of β-blockers/agonists consisted mainly of halogenations, hydroxylations and dealkylations. Also, many of these by-products are stable, depending on the chlorination operational parameters employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Anal Bioanal Chem 399:251–275

    Article  CAS  Google Scholar 

  2. Mompelat S, Le Bot B, Thomas O (2009) Environ Int 35:803–814

    Article  CAS  Google Scholar 

  3. Petrovic M, Barceló D (eds) (2007) Analysis, fate and removal of pharmaceuticals in the water cycle. Elsevier, Amsterdam

    Google Scholar 

  4. Reemtsma T, Jekel M (eds) (2006) Organic pollutants in the water cycle. Wiley VCH, Weinheim

    Google Scholar 

  5. Rosenfeld GC, Loose DS (2009) Pharmacology. Lippincott Williams & Wilkins, New York

    Google Scholar 

  6. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Environ Pollut 157:1778–1786

    Article  CAS  Google Scholar 

  7. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Water Res 43:363–380

    Article  CAS  Google Scholar 

  8. Gros M, Petrović M, Ginebreda A, Barceló D (2010) Environ Int 36:15–26

    Article  CAS  Google Scholar 

  9. Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2012) Chemosphere. doi:10.1016/j.chemosphere.2011.11.053

  10. Jones OAH, Voulvoulis N, Lester JN (2007) Environ Pollut 145:738–744

    Article  CAS  Google Scholar 

  11. Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Maroto RR, Gil A, Catalá M (2011) Chemosphere 82:1062–1071

    Article  Google Scholar 

  12. Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010) Water Res 44:936–948

    Article  CAS  Google Scholar 

  13. Huerta-Fontela M, Galceran MT, Ventura F (2011) Water Res 45:1432–1442

    Article  CAS  Google Scholar 

  14. Pinkston KE, Sedlak DL (2004) Environ Sci Technol 38:4019–4025

    Article  CAS  Google Scholar 

  15. Euro Chlor, European Federation of Chlor-alkali producers. http://www.eurochlor.org/disinfection. Accessed October 2011

  16. Richardson SD (2003) Trends Anal Chem 22:666–684

    Article  CAS  Google Scholar 

  17. Zwiener C, Richardson SD (2005) Trends Anal Chem 24:613–621

    Article  CAS  Google Scholar 

  18. Bedner M, Maccrehan WA (2006) Environ Sci Technol 40:516–522

    Article  CAS  Google Scholar 

  19. Canosa P, Morales S, Rodríguez I, Rubí E, Cela R, Gómez M (2005) Anal Bioanal Chem 383:1119–1126

    Article  CAS  Google Scholar 

  20. Canosa P, Rodríguez I, Rubí E, Negreira N, Cela R (2006) Anal Chim Acta 575:106–113

    Article  CAS  Google Scholar 

  21. Terasaki M, Makino M, Tatarazako N (2009) J Appl Toxicol 29:242–247

    Article  CAS  Google Scholar 

  22. Dodd MC, Huang C-H (2007) Water Res 41:647–655

    Article  CAS  Google Scholar 

  23. Krkošek WH, Koziar SA, White RL, Gagnon GA (2011) Water Res 45:1414–1422

    Article  Google Scholar 

  24. Li Z, Fenet H, Gomez E, Chiron S (2011) Water Res 45:1587–1596

    Article  CAS  Google Scholar 

  25. Quintana JB, Rodil R, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2010) Water Res 44:243–255

    Article  CAS  Google Scholar 

  26. Rodil R, Quintana JB, Cela R (2011) Water Res (submitted)

  27. Rodil R, Quintana JB, Cela R (2012) J Hazard Mater 199–200:73–81

    Google Scholar 

  28. Negreira N, Canosa P, Rodríguez I, Ramil M, Rubí E, Cela R (2008) J Chromatogr A 1178:206–214

    Article  CAS  Google Scholar 

  29. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) J Chromatogr A 1217:7038–7054

    Article  Google Scholar 

  30. Rodrigues PMSM, Esteves da Silva JCG, Antunes MCG (2007) Anal Chim Acta 595:266–274

    Google Scholar 

  31. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Anal Chim Acta 597:179–186

    Article  CAS  Google Scholar 

  32. Marco-Urrea E, Radjenović J, Caminal G, Petrović M, Vicent T, Barceló D (2010) Water Res 44:521–532

    Article  CAS  Google Scholar 

  33. Radjenović J, Pérez S, Petrović M, Barceló D (2008) J Chromatogr A 1210:142–153

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Ministerio de Ciencia e Innovación and FEDER funds, project no.: CTQ2009-08377 and CTQ2010-18927. J.B.Q. and R.R. also acknowledge Ministerio de Ciencia e Innovación for their contracts (Ramón y Cajal research program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Benito Quintana or Rosario Rodil.

Additional information

Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, J. Bettmer, T. Hasegawa, Q. Wang and Y. Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana, J.B., Rodil, R. & Cela, R. Reaction of β-blockers and β-agonist pharmaceuticals with aqueous chlorine. Investigation of kinetics and by-products by liquid chromatography quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 403, 2385–2395 (2012). https://doi.org/10.1007/s00216-011-5707-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5707-7

Keywords

Navigation