Log in

Quantification of phytochelatins and their metal(loid) complexes: critical assessment of current analytical methodology

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Whilst there are a variety of methods available for the quantification of biothiols in sample extracts, each has their own inherent advantages and limitations. The ease with which thiols readily oxidise not only hinders their quantification but also alters the speciation profile. The challenge faced by the analyst is not only to preserve the speciation of the sample, but also to select a method which allows the retrieval of the desired information. Given that sulfur is not a chromophore and that it cannot easily be monitored by ICP-MS, a number of direct and indirect methods have been developed for this purpose. In order to assess these methods, they are compared in the context of the measurement of arsenic–phytochelatin complexes in plant extracts. The inherent instability of such complexes, along with the instabilities of reduced glutathione and phytochelatin species,necessitates a rapid and sensitive analytical protocol. Whilst being a specific example, the points raised and discussed in this review will also be applicable to the quantification of biothiols and thiol–metal(loid) species in a wide range of systems other than just the analysis of arsenic–phytochelatin species in plant extracts.

Figure shows the schematic of a simultaneous online HPLC-ICP-MS/ESI-MS; the most sensitive direct technique for phytochelatin quantification and identification in biological extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Prices correct as of October 2011.

References

  1. Hansen R, Roth D, Winther JR (2009) Proc Natl Acad Sci USA 106:422–427

    Google Scholar 

  2. Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Inorg Chem 44:2964–2972

    Article  CAS  Google Scholar 

  3. Day MW, Hsu BT, Joshua-Tor L, Park J-B, Zhou ZH, Adams MWW, Rees D (1992) Protein Sci 1:1494–1507

    Article  CAS  Google Scholar 

  4. Guss JM, Bartunik HD, Freeman HC (1992) Acta Crystallogr B48:790–811

    CAS  Google Scholar 

  5. Krishna SS, Majumdar I, Grishin NV (2003) Nucleic Acids Res 31:532–550

    Article  CAS  Google Scholar 

  6. Delmondedieu M, Basti MM, Otvos JD, Thomas DJ (1993) Chem Res Toxicol 6:598–602

    Article  Google Scholar 

  7. Zenk MH (1996) Gene 179:21–30

    Article  CAS  Google Scholar 

  8. Orwar O, Fishman HA, Ziv N, Scheller RH, Zare RN (1995) Anal Chem 67:4261–4268

    Article  Google Scholar 

  9. Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P, Orrenius S (1992) Proc Natl Acad Sci USA 89:4412–4416

    Google Scholar 

  10. Meister A, Tate SS (1976) Annu Rev Biochem 45:559–604

    Article  CAS  Google Scholar 

  11. Hopkins FG (1929) J Biol Chem 84:269–320

    CAS  Google Scholar 

  12. Kitchin KT, Wallace K (2006) J Biochem Mol Toxicol 20:48–56

    Article  CAS  Google Scholar 

  13. Murasugi A, Wada C, Hayashi Y (1981) J Biochem 90:1561–1564

    CAS  Google Scholar 

  14. Kondo N, Isobe M, Imai K, Goto T (1983) Tetrahedron Lett 24:925–928

    Article  CAS  Google Scholar 

  15. Chen J, Zhou J, Goldsbrough PB (1997) Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  16. Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Proc Natl Acad Sci USA 86:6838–6842

    Google Scholar 

  17. Sneller FEC, Van Heerwaarden LM, Kraaijeveld-Smit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999) New Phytol 144:223–232

    Article  CAS  Google Scholar 

  18. Chassaigne H, Vacchina V, Kutchan TM, Zenk MH (2001) Phytochemistry 56:657–668

    Article  CAS  Google Scholar 

  19. Cai Y, Ma LQ (2000) ACS Symp Ser 835:95–114

    Article  Google Scholar 

  20. Grill E, Winnacker EL, Zenk MH (1987) Proc Natl Acad Sci USA 84:439–443

    Google Scholar 

  21. Braeutigam A, Wesenberg D, Preud’Homme H, Schaumloeffel D (2010) Anal Bioanal Chem 398:877–883

    Article  CAS  Google Scholar 

  22. Schmoeger MEV, Oven M, Grill E (2000) Plant Physiol 122:793–801

    Article  Google Scholar 

  23. Rey NA, Howarth OW, Pereira-Maia EC (2004) J Inorg Biochem 98:1151–1159

    Article  CAS  Google Scholar 

  24. Meharg AA, Hartley-Whitaker J (2002) New Phytol 154:29–43

    Article  CAS  Google Scholar 

  25. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y, Islam R (2008) Environ Sci Technol 42:1051–1057

    Article  CAS  Google Scholar 

  26. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Plant Physiol 152:2211–2221

    Article  CAS  Google Scholar 

  27. Scheller HV, Hiuang B, Hatch E, Goldsbrough PB (1987) Plant Physiol 85:1031–1035

    Article  CAS  Google Scholar 

  28. Zhang H, Xu W, Guo J, Zhenyan H, Ma M (2005) Plant Sci 169:1059–1065

    Article  CAS  Google Scholar 

  29. Riddles PW, Blakeley RL, Zerber B (1983) Methods Enzymol 91:49

    Article  CAS  Google Scholar 

  30. Steffens JC (1990) Annu Rev Plant Physiol 41:553–575

    Article  CAS  Google Scholar 

  31. Rauser WE (1990) Ann Rev Biochem 59:61–86

    Article  CAS  Google Scholar 

  32. de Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Plant Physiol 104:255–261

    Google Scholar 

  33. Raab A, Feldmann J, Meharg AA (2004) Plant Physiol 134:1113–1122

    Article  CAS  Google Scholar 

  34. Bluemlein K, Raab A, Feldmann J (2009) Anal Bioanal Chem 393:357–366

    Article  CAS  Google Scholar 

  35. Grassetti DR, Murray JF Jr (1967) Arch Biochem Biophys 119:41–49

    Article  CAS  Google Scholar 

  36. Egwim IOC, Gruber HJ (2001) Anal Biochem 288:188–194

    Article  CAS  Google Scholar 

  37. Seiwert B, Karst U (2008) Anal Bioanal Chem 390:181–200

    Article  CAS  Google Scholar 

  38. Seiwert B, Hayen H, Karst U (2008) J Am Soc Mass Spectrom 19:1–7

    Article  CAS  Google Scholar 

  39. Bomke S, Pfeifer T, Meermann B, Buscher W, Karst U (2010) Anal Bioanal Chem 397:3503–3513

    Article  CAS  Google Scholar 

  40. McSheehy S, Marcinek M, Chassaigne H, Spuznar J (2000) Anal Chim Acta 410:71–84

    Article  CAS  Google Scholar 

  41. Rosenberg E (2003) J Chromatogr A 1000:841–889

    Article  CAS  Google Scholar 

  42. Bluemlein K, Krupp EM, Feldmann J (2009) J Anal At Spectrom 24:108–113

    Article  CAS  Google Scholar 

  43. Bluemlein K, Raab A, Meharg AA, Charnock JM, Feldmann J (2008) Anal Bioanal Chem 390:1739–1751

    Article  CAS  Google Scholar 

  44. Sloth JJ, Larson EH (2000) J Anal At Spectrom 15:669–672

    Article  CAS  Google Scholar 

  45. Yeh CF, Jiang SJ, His TS (2004) Anal Chim Acta 502:57–63

    Article  CAS  Google Scholar 

  46. Wood BA, Miyashita S, Kaise T, Raab A, Feldmann J (2011) Environ Chem 8:30–41

    Article  CAS  Google Scholar 

  47. Kutscher DJ, del Castillo Busto E, Zinn N, Sanz-Medela A, Bettmer J (2008) J Anal At Spectrom 23:1359–1364

    Article  CAS  Google Scholar 

  48. Krupp EM, Mestrot A, Wielgus J, Meharg AA, Feldmann J (2009) Chem Commun 28:4257–4259

    Article  Google Scholar 

  49. Krupp EM, Milne BF, Mestrot A, Meharg AA, Feldmann J (2008) Anal Bioanal Chem 390:1753–1764

    Article  CAS  Google Scholar 

  50. Schaumloeffel D, Giusti P, Preud’Homme H, Szpunar J, Lobinski R (2007) Anal Chem 79:2859–2868

    Article  CAS  Google Scholar 

  51. Jakubowski N, Moens L, Vanhaecke FN (1998) Spectrochim Acta B 53:1739–1763

    Article  Google Scholar 

  52. Ye WL, Wood BA, Stroud JL, Andralojc J, Raab A, McGrath SP, Feldmann J, Zhao FJ (2010) Plant Physiol 154:1505–1513

    Article  CAS  Google Scholar 

  53. Bluemlein K, Klimm E, Raab A, Feldmann J (2009) Environ Chem 6:486–494

    Article  CAS  Google Scholar 

  54. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Plant Physiol 109:1427–1433

    CAS  Google Scholar 

  55. Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadía J, Hernández LE (2011) Plant Cell Environ 34:778–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Feldmann.

Additional information

Published in the special paper collection Elemental Imaging and Speciation in Plant Science with guest editors J. Feldmann and E. Krupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, B.A., Feldmann, J. Quantification of phytochelatins and their metal(loid) complexes: critical assessment of current analytical methodology. Anal Bioanal Chem 402, 3299–3309 (2012). https://doi.org/10.1007/s00216-011-5649-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5649-0

Keywords

Navigation