Log in

An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An approach based on IUPAC methodology to estimate the limit of detection of bulk optode-based analytical methods for anions has been developed. The traditional IUPAC methodology for calculating the detection limit was modified to be adapted to particular cases where the calibration curves have a sigmoidal profile. Starting from the different full theoretical models for every co-extraction mechanism of the analyte in the membrane in bulk optodes, several particular simplified models at low analyte concentration were obtained and validated. The slope of the calibration curve at low analyte concentration was calculated from the first derivative of the simplified equation and, subsequently, the detection limit was estimated. This fitted-for-purpose estimation strategy was applied to anion quantification for in-house bulk optode-based analytical methods, and the estimated limits of detection were compared with those obtained by applying classical geometrical methodology. This way of establishing the detection limit yields values that maintain their true statistical and probabilistic aspects. It can be easily applied to any analytical system which yields non-linear calibration curves at low analyte concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spichiger-Keller UE (1998) Optical sensors, optodes. In: Spichiger-Keller UE (ed) Chemical sensors and biosensors for medical and biological applications. Wiley, Weinheim

    Chapter  Google Scholar 

  2. Behringer C, Lehmann B, Simon W (1987) Chimia 41:397–398

    CAS  Google Scholar 

  3. Behringer C, Lehmann B, Haug JP, Seiler K, Morf WE, Hartman K, Simon W (1990) Anal Chim Acta 233:41–47

    Article  CAS  Google Scholar 

  4. Morf WE, Seiler K, Lehmann B, Behringer C, Hartman K, Simon W (1989) Pure Appl Chem 61:1613–1618

    Article  CAS  Google Scholar 

  5. Hong YK, Cha GS, Shin DS, Nam H (1994) Bull Korean Chem Soc 15:836–841

    CAS  Google Scholar 

  6. Choi MF, Hawkins P (1997) Anal Chim Acta 344:105–110

    Article  CAS  Google Scholar 

  7. Ortuño JA, Albero MI, Garcia MS, Sánchez-Pedreño C, Garcia MI, Exposito R (2003) Talanta 60:563–569

    Article  Google Scholar 

  8. Barker SLR, Shortreed MR, Kopelman R (1997) Anal Chem 69:990–995

    Article  CAS  Google Scholar 

  9. Demuth C, Spichiger UE (1997) Anal Chim Acta 355:259–268

    Article  CAS  Google Scholar 

  10. Seiler K, Simon W (1992) Anal Chim Acta 266:73–87

    Article  CAS  Google Scholar 

  11. Tan SSS, Hauser PC, Chaniotakis NA, Suter G, Simon W (1989) Chimia 43:257–261

    CAS  Google Scholar 

  12. Antico E, Lerchi M, Rusterholz B, Achermann N, Badertscher M, Valiente M, Pretsch E (1999) Anal Chim Acta 388:327–338

    Article  CAS  Google Scholar 

  13. Ng RH, Sparks KM, Statland BE (1992) Clin Chem 38:1371–1372

    CAS  Google Scholar 

  14. Hisamoto H, Watanabe K, Oka H, Nakagawa E, Spichiger-Keller UE, Suzuki K (1994) Anal Sci 10:615–623

    Article  CAS  Google Scholar 

  15. Lapresta-Fernandez A, Huertas R, Melgosa M, Capitan-Vallvey LF (2009) Anal Bioanal Chem 393:1361–1366

    Article  CAS  Google Scholar 

  16. Orbe-Paya Id, Erenas MM, Capitan-Vallvey LF (2007) Sens Actuators B 127:586–592

    Article  Google Scholar 

  17. Barker SLR, Thorsrud B, Kopelman R (1998) Anal Chem 70:100–104

    Article  CAS  Google Scholar 

  18. Freiner D, Kunz RE, Citterio D, Spichiger UE, Gale MT (1995) Sens Actuators B 29:277–285

    Article  Google Scholar 

  19. Lapresta-Fernandez A, Capitan-Vallvey LF (2008) Sens Actuators B 134:694–701

    Article  Google Scholar 

  20. Bakker E, Simon W (1992) Anal Chem 64:1805–1812

    Article  CAS  Google Scholar 

  21. Lerchi M, Bakker E, Rusterholz B, Simon W (1992) Anal Chem 64:1534–1540

    Article  CAS  Google Scholar 

  22. Bakker E, Bühlmann P, Pretsch E (1997) Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  23. Seiler K, Simon W (1992) Sens Actuators B B6:295–298

    Article  CAS  Google Scholar 

  24. IUPAC (1976) Pure Appl Chem 48:127

    Article  Google Scholar 

  25. Midgley D (1980) Analyst 105:1002–1005

    Article  CAS  Google Scholar 

  26. Bakker E, Willer M, Pretsch E (1993) Anal Chim Acta 282:265–271

    Article  CAS  Google Scholar 

  27. Capitan-Vallvey LF, Fernandez-Ramos MD, Alvarez de Cienfuegos P (2002) Anal Chim Acta 451:231–241

    Article  CAS  Google Scholar 

  28. IUPAC (1976) Pure Appl Chem 45:99–103

    Article  Google Scholar 

  29. Lindstrom, Richard M. (2009) Limits for qualitative detection and quantitative determination. Available at: http://nvl.nist.gov/pub/nistpubs/sp958-lide/164-166.pdf

  30. ISO (2008) ISO 11843–5:2008. Capability of detection. Part 5: Methodology in the linear and non-linear calibration cases. International Standardization Organization, Geneva

  31. Hayashi Y, Matsuda R, Ito K, Nishimura W, Imai K, Maeda M (2005) Anal Sci 21:167–169

    Article  CAS  Google Scholar 

  32. Shortreed MR, Barker SLR, Kopelman R (1996) Sensors Act A 35:217–221

    Article  Google Scholar 

  33. Tan SSS, Hauser PC, Wang K, Fluri K, Seiler K, Rusterholz B, Suter G, Krüttli M, Spichiger-Keller UE, Simon W (1991) Anal Chim Acta 255:35–44

    Article  CAS  Google Scholar 

  34. Capitan-Vallvey LF, Arroyo-Guerrero E, Berenguer C, Fernandez-Ramos MD (2004) Anal Bioanal Chem 380:563–569

    Article  CAS  Google Scholar 

  35. Capitan-Vallvey LF, Arroyo-Guerrero E, Fernandez-Ramos MD, Santoyo-Gonzalez F (2005) Anal Chem 77:4459–4466

    Article  CAS  Google Scholar 

  36. Kuratli M, Badertscher M, Rusterholz B, Simon W (1993) Anal Chem 65:3473–3479

    Article  CAS  Google Scholar 

  37. Badr IHA, Jhonson RD, Díaz M, Hawthorne MF, Bachas LG (2000) Anal Chem 72:4249–4254

    Article  CAS  Google Scholar 

  38. Wang E, Romero C (2004) Anal Chim Acta 433:89–95

    Article  Google Scholar 

  39. Badr IHA (2001) Anal Lett 34:2019–2034

    Article  CAS  Google Scholar 

  40. Badr IHA, Meyerhoff ME (2005) J Am Chem Soc 127:5318–5319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Ministerio de Ciencia e Innovación (Spain) (projects CTQ2009-14428-C02-01 and CTQ2009-14428-C02-02) and the Junta de Andalucia (project P08-FQM-3535). These projects have been partially supported by European Regional Development Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Fernández-Ramos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Ramos, M.D., Cuadros-Rodríguez, L., Arroyo-Guerrero, E. et al. An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves. Anal Bioanal Chem 401, 2881–2889 (2011). https://doi.org/10.1007/s00216-011-5366-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5366-8

Keywords

Navigation