Log in

In-situ imaging sensors for bioprocess monitoring: state of the art

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395–403, 1993; Lausch et al. J Chromatogr A 654:190–195, 1993; Scheper et al. Ann NY Acad Sci 506:431–445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247–256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111–118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11–15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry.

Photo of an In-situ microscope manufactured by Sartorius Stedim Biotech (Göttingen, Germany)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Middendorf C, Schulze B, Freitag R, Scheper T, Howaldt M, Hoffmann H (1993) On- line immunoanalysis for bioprocess control. J Biotechnol 31:395–403

    Article  CAS  Google Scholar 

  2. Lausch R, Scheper T, Reif OW, Schlösser J, Fleischer J, Freitag R (1993) Rapid capillary gel electrophoresis of proteins. J Chromatogr A 654:190–195

    Article  CAS  Google Scholar 

  3. Scheper T, Lorenz T, Schmidt W, Schügerl K (1987) On-line measurement of culture fluorescence for process monitoring and control of biotechnological processes. Ann NY Acad Sci 506:431–445

    Article  CAS  Google Scholar 

  4. Höpfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A Review of non- invasive and optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33:247–256

    Article  Google Scholar 

  5. Scheper T, Gebauer A, Sauerbrei A, Niehoff A, Schügerl K (1984) Measurement of biological parameters during fermentation processes. Anal Chim Acta 163:111–118

    Article  CAS  Google Scholar 

  6. Reardon K, Scheper T (1995) In: Townshend A, Haswell S, Lederer M, Wilson I, Worsfold P (eds.) Encyclopedia of Anal Sci, Acad. Press Ltd, London

  7. Schügerl K, Lorenz T, Lübbert A, Niehoff J, Scheper T, Schmidt W (1986) Pros and cons: on-line versus off-line analysis of fermentations. Trends Biotechnol 4:11–15

    Article  Google Scholar 

  8. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cell. Nat Biotechnol 11:1393–1398

    Article  Google Scholar 

  9. Lowe CR, Lowe AR, Gupta G (2001) New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J Biochem Biophys Methods 49:561–574

    Article  CAS  Google Scholar 

  10. Haake C, Landgrebe D, Scheper T, Rhiel M (2009) Online-Infrarotspektroskopie in der Bioprozessanalytik. Chem Ing Tech 9:1385–1396

    Article  Google Scholar 

  11. Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol (submitted)

  12. Burzlaff A, Kalesse M, Kasper C, Scheper T (2003) Multi parameter in vitro testing of ratjadone using flow cytometry. Appl Microbiol Biotechnol 62:174–179

    Article  CAS  Google Scholar 

  13. Burzlaff A, Brethauer S, Kasper C, Jackisch BO, Scheper T (2004) Flow cytometry: interesting tool for studying binding behavior of DNA on inorganic Layered Double Hydroxide (LDH). Cytometry A (62A)

  14. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti PJ (2005) Measurement of the integral refractive indexand dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13:9361–9373

    Article  Google Scholar 

  15. Kemmler M, Fratz M, Giel D, Saum N, Brandenburg A, Hoffmann C (2007) Noninvasive time-dependent cytometry monitoring by digital holography. J Biomed Opt 12:064002

    Article  Google Scholar 

  16. Suhr H, Speil P, Wehnert G, Storhas W (1991) In situ Mikroskopsonde und Meßverfahren, DE 40 32 002 A1 (Anmeldetag 09.10.1990)

  17. Rudolph G, Lindner P, Bluma A, Jöris K, Martinez G, Hitzmann B, Scheper T (2009) In: Rao G (ed) Advances in biochemical engineering/biotechnology

  18. Barrett P, Glennon B (2002) Chem Eng Res Des 80:799–805

    Article  CAS  Google Scholar 

  19. Kougoulos E, Jones AG, Jennings KH, Wood-Kaczmar MW (2005) J Cryst Growth 273:529

    Article  CAS  Google Scholar 

  20. O’Sullivan B, Barrett P, Hsiao G, Carr A, Glennon B (2003) Org Process Res Dev 7:977–982

    Article  Google Scholar 

  21. Haijan Q, Louhi-Kultanen M, Kallas J (2006) J Cryst Growth 289:286–294

    Article  Google Scholar 

  22. Junker B, Maciejak W, Darnell B, Lester M, Pollack M (2007) Feasibility of an in situ measurement device for bubble size and distribution. Bioprocess Biosyst Eng 30:313–326

    Article  CAS  Google Scholar 

  23. Suhr H, Wehnert G, Schneider K, Bittner C, Scholz T, Geissler P, Jähne B, Scheper T (1995) Biotechnol Bioeng 47:106–116

    Article  CAS  Google Scholar 

  24. Schneider K (1995) In situ Mikroskopie – Entwicklung und Einsatz eines Auflicht Fluoreszenzsensors zur Bestimmung der Zellkonzentration in Bioprozessen. Leibniz Universität Hannover

  25. Bittner C (1994) In situ-Mikroskopie – Ein neues Verfahren zur On-line-Bestimmung der Biomasse bei Kultivierungsprozessen. Leibniz Universität Hannover

  26. Bittner C, Wehnert G, Scheper T (1998) Biotechnol Bioeng 60:24–35

    Article  CAS  Google Scholar 

  27. Camisard V, Brienne JP, Baussart H, Hammann J, Suhr H (2002) Biotechnol Bioeng 78:73–80

    Article  CAS  Google Scholar 

  28. Guez JS, Cassar JP, Wartelle F, Dhulster P, Suhr H (2004) J Biotechnol 111:335–343

    Article  CAS  Google Scholar 

  29. Scholz T (1995) Ein Depth from Focus-Verfahren zur Online- Bestimmung der Zellkonzentration bei Fermentationsprozessen, Universität Heidelberg

  30. Frerichs JG (2000) Entwicklung eines In situ Mikroskops zur bildgestützten Online- Überwachung von Bioprozessen. Leibniz Universität Hannover

  31. Frerichs JG, Joeris K, Konstantinov K, Scheper T (2002) Chem Ing Tech 74:1629–1633

    Article  CAS  Google Scholar 

  32. Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) Cytotech 38:129–134

    Article  CAS  Google Scholar 

  33. Martinez G, Frerichs JG, Joeris K, Kontantinov K, Scheper T (2005) IEEE international conference on acoustics, speech and signal processing (ICASSP), 2. IEEE CNF, Philadelphia, 497

    Google Scholar 

  34. Bluma A, Höpfner T, Rudolph G, Lindner P, Beutel S, Hitzmann B, Scheper T (2009) Adaptation of in-situ microscopy for crystallization processes. J Cryst Growth 311:4193–4198

    Article  CAS  Google Scholar 

  35. Brückerhoff T, Frerichs JG, Joeris K, Konstantinov K, Scheper T (2005) In: Godia F, Fussenegger M (eds) Proceedings of the 18th ESACT Meeting. Springer, Spain

    Google Scholar 

  36. Brückerhoff T (2006) Bildbasiertes Inline-Monitoring von Kultivierungsprozessen mit einem optimierten In situ Mikroskopsystem, Leibniz Universität Hannover

  37. Larsson C, Vonstockar U, Marison I, Gustafsson L (1993) J Bacteriol 175:4809–4816

    CAS  Google Scholar 

  38. Rudolph G, Lindner P, Gierse A, Bluma A, Martinez G, Hitzmann B, Scheper T (2007) Online monitoring of microcarrier based fibroblast cultivations with in-situ microscopy. Biotechnol Bioeng 99:136–145

    Article  Google Scholar 

  39. Wei N, You J, Friehs K, Flaschel E, Nattkemper TW (2007) Biotechnol Lett 29:373–378

    Article  CAS  Google Scholar 

  40. Wie N, You J, Friehs K, Flaschel E, Nattkemper TW (2007) Biotechnol Bioeng 97:1489–1500

    Article  Google Scholar 

  41. Rehbock C, Riechers D, Höpfner T, Bluma A, Lindner P, Hitzmann B, Beutel S, Scheper T (2009) Development of a Flow-Through Microscopic Multitesting system for Parallel Monitoring of Cell Samples in Biotechnological Cultivation Processes. J Biotech (accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Bluma.

Additional information

Published in the special issue Focus on Bioanalysis with Guest Editors Antje J. Baeumner, Günter Gauglitz, and Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluma, A., Höpfner, T., Lindner, P. et al. In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bioanal Chem 398, 2429–2438 (2010). https://doi.org/10.1007/s00216-010-4181-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4181-y

Keywords

Navigation