Log in

Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography–tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stir-bar-sorptive extraction (SBSE) with liquid desorption (LD) and ultra-high-performance liquid chromatography–electrospray ionization triple-quadrupole tandem mass spectrometry (UHPLC–(ESI)MS–MS) were used for analysis of six personal care products in environmental water: four UV filters (2,2-dihydroxy-4-methoxybenzophenone, benzophenone-3, octocrylene, and octyldimethyl-p-aminobenzoic acid) and two antimicrobial agents (triclocarban and triclosan). Experimental conditions that affect SBSE-LD sorption efficiency (extraction time and temperature, sample pH, and ionic strength) and desorption efficiency (solvent, temperature, and time) were optimized. The method proved to be sensitive—a 50-mL sample was used to determine these compounds in environmental waters at trace levels. The detection limits of the analytical method were 2.5 ng L−1 for river water and 5–10 ng L−1 for effluent and influent sewage water. In river waters, benzophenone-3 was found at levels from 6 ng L−1 to 28 ng L−1 and triclosan at levels <LOQ. Benzophenone-3 was found between 75 and 127 ng L−1 in influent sewage, whereas concentrations of benzophenone-3 and triclosan were commonly below 25 ng L−1 in effluent sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fatta D, Nikolaou A, Achilleos A, Meriç S (2007) Trends Anal Chem 26:515–533

    Article  CAS  Google Scholar 

  2. Kot-Wasik A, Debska J, Namiensnik J (2007) Trends Anal Chem 26:557–568

    Article  CAS  Google Scholar 

  3. Zenker A, Schmutz A, Fent K (2008) J Chromatogr A 1202:64–74

    Article  CAS  Google Scholar 

  4. Calafat AM, Wong LY, Ye X, Reidy JA, Needham LL (2008) Environ Health Perspect 116:893–897

    Article  CAS  Google Scholar 

  5. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Water Res 42:3498–3518

    Article  CAS  Google Scholar 

  6. Guo JH, Li XH, Cao XL, Li Y, Wang XZ, Xu XB (2009) J Chromatogr A 1216:3038–3043

    Article  CAS  Google Scholar 

  7. Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2009) J Chromatogr A 1216:6994–7000

    Article  CAS  Google Scholar 

  8. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2008) Anal Chem 80:1307–1315

    Article  CAS  Google Scholar 

  9. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Talanta 74:1299–1312

    Article  CAS  Google Scholar 

  10. Sánchez-Prado L, Llompart M, Lores M, García-Jares C, Bayona JM, Cela R (2006) Chemosphere 65:1338–1347

    Article  Google Scholar 

  11. Lambropoulou DA, Giokas DL, Sakkas VA, Albanis TA, Karayannis MI (2002) J Chromatogr A 967:243–253

    Article  CAS  Google Scholar 

  12. Negreira N, Rodríguez I, Ramil M, Rubí E, Cela R (2009) Anal Chim Acta 638:36–44

    Article  CAS  Google Scholar 

  13. Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR (2002) Environ Sci Technol 36:2322–2329

    Article  Google Scholar 

  14. Mills GA, Vrana B, Allan I, Alvarez DA, Huckins JN, Greenwood R (2007) Anal Bioanal Chem 387:1153–1157

    Article  CAS  Google Scholar 

  15. Baltussen E, Sandra P, David F, Cramers C (1999) J Microcol Sep 11:737–747

    Article  CAS  Google Scholar 

  16. David F, Sandra P (2007) J Chromatogr A 1152:54–69

    Article  CAS  Google Scholar 

  17. Baltussen E, Cramers CA, Sandra P (2002) Anal Bioanal Chem 373:3–22

    Article  CAS  Google Scholar 

  18. Silva ARM, Portugal FCM, Nogueira JMF (2008) J Chromatogr A 1209:10–16

    Article  CAS  Google Scholar 

  19. Rodil R, Moeder M (2008) J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  20. Kawaguchi M, Ito R, Honda H, Endo N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2008) J Chromatogr A 1200:260–263

    Article  CAS  Google Scholar 

  21. Silva ARM, Nogueira JMF (2008) Talanta 74:1498–1504

    Article  CAS  Google Scholar 

  22. Cunliffe JM, Adams-Hall SB, Maloney TD (2007) J Sep Sci 30:1214–1223

    Article  CAS  Google Scholar 

  23. Van De Steene JC, Lambert WE (2008) J Am Soc Mass Spectrom 19:713–718

    Article  Google Scholar 

  24. Cuderman P, Heath E (2007) Anal Bioanal Chem 387:1343–1350

    Article  CAS  Google Scholar 

  25. Li W, Ma Y, Guo C, Hu W, Liu K, Wang Y, Zhu T (2007) Water Res 41:3506–3512

    Article  CAS  Google Scholar 

  26. Balmer ME, Buser HR, Müller HR, Poiger T (2005) Environ Sci Technol 39:953–962

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by the Dirección General de Investigación of the Spanish Ministry of Science and Technology, project CTM2008-06847-C02-01/TECNO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Maria Marcé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrouzo, M., Borrull, F., Marcé, R.M. et al. Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography–tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples. Anal Bioanal Chem 397, 2833–2839 (2010). https://doi.org/10.1007/s00216-010-3743-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3743-3

Keywords

Navigation