Log in

Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multianalyte lateral-flow immunochromatographic technique using colloidal gold-labeled polyclonal antibodies was developed for the rapid simultaneous detection of clenbuterol and ractopamine. The assay procedure could be accomplished within 5 min, and the results of this qualitative one-step assay were evaluated visually according to whether test lines appeared or not. When applied to the swine urines, the detection limit and the half maximal inhibitory concentration (IC50) of the test strip under an optical density scanner were calculated to be 0.1 ± 0.01 ng mL−1 and 0.1 ± 0.01 ng mL−1, 0.56 ± 0.08 ng mL−1, and 0.71 ± 0.06 ng mL−1, respectively, the cut-off levels with the naked eye of 1 ng mL−1 and 1 ng mL−1 for clenbuterol and ractopamine were observed. Parallel analysis of swine urine samples with clenbuterol and ractopamine showed comparable results obtained from the multianalyte lateral-flow test strip and GC-MS. Therefore, the described multianalyte lateral-flow test strip can be used as a reliable, rapid, and cost-effective on-site screening technique for the simultaneous determination of clenbuterol and ractopamine residues in swine urine.

The colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rick CA, Baker PK, Dalrymple RH (1984) Recipr Meat Conf Proc 37:5

    Google Scholar 

  2. **ao RJ, Xu ZR, Chen HL (1999) Anim Feed Sci Technol 79:119–127

    Article  CAS  Google Scholar 

  3. Martinez-Navarro JF (1990) Lancet 336:1311

    Article  CAS  Google Scholar 

  4. Mitchell GA, Dunnavan G (1998) J Anim Sci 76:208–211

    CAS  Google Scholar 

  5. Hooijerink H, Schilt R, Haasnoot W, Courtheijn D (1991) J Pharm Biomed Anal 485-492

  6. Botterblom MH, Feenstra MG, Erdtsieck-Ernste EB (1993) J Chromatogr 613:121–126

    Article  CAS  Google Scholar 

  7. Turberg MP, Macy TD, Lewis JJ, Coleman MR (1994) J AOAC Int 78:1394–1402

    Google Scholar 

  8. Abukhalaf IK, von Deutsch DA, Parks BA, Wineski L, Paulsen D, Aboul-Enein HY, Potter DE (2000) Biomed Chromatogr 14:99–105

    Article  CAS  Google Scholar 

  9. Harkins JD, Woods WE, Lehner AF, Fisher M, Tobin T (2001) J Vet Pharmacol Ther 24:7–14

    Article  CAS  Google Scholar 

  10. Haasnoot W, Stouten P, Lommen A, Cazemier G, Hooijerink D, Schilt R (1994) Analyst 119:2675–80

    Article  CAS  Google Scholar 

  11. Bocca B, Fiori M, Cartoni C, Brambilla G (2003) J AOAC Int 86:8–14

    CAS  Google Scholar 

  12. Wang JP, Li XW, Zhang W, Shen JZ (2006) Chromatographia 64:613–617

    Article  CAS  Google Scholar 

  13. Lehner AF, Harkins JD, Karpiesiuk W, Woods WE, Robinson NE, Dirikolu L, Fisher M, Tobin T (2001) J Anal Toxicol 25:280–287

    CAS  Google Scholar 

  14. Antignac JP, Marchand P, Le Bizec B, Andre F (2002) J Chromatogr B 774:59–66

    Article  CAS  Google Scholar 

  15. Shishani E, Chai SC, Jamokha S (2003) Anal Chim Acta 483:137–145

    Article  CAS  Google Scholar 

  16. Elliott CT, Thompson CS, Arts CJ, Crooks SR, van Baak MJ, Verheij ER, Baxter GA (1998) Analyst 123:1103–1107

    Article  CAS  Google Scholar 

  17. Shelver WL, Smith DJ (2000) J Immunoassay 21:1–23

    Article  CAS  Google Scholar 

  18. Shelver WL, Smith DJ (2002) J Agric Food Chem 50:2742–2747

    Article  Google Scholar 

  19. Shelver WL, Smith DJ (2003) J Agric Food Chem 51:3715–3721

    Article  CAS  Google Scholar 

  20. Shelver WL, Smith DJ (2004) J Agric Food Chem 52:2159–2166

    Article  CAS  Google Scholar 

  21. Shelver WL, Kim HJ, Li QX (2005) J Agric Food Chem 53:3273–3280

    Article  CAS  Google Scholar 

  22. Wang JP, Zhang SX, Shen JZ (2006) J Anim Sci 84:1248–1251

    CAS  Google Scholar 

  23. Degand G, Bernes-Duyckaerts A, Maghuin-Rogister G (1992) J Agric Food Chem 40:70–75

    Article  CAS  Google Scholar 

  24. Mcconnell RI, Mccormick A, Lamont JV, Fitzgerald SP (1994) Food Agric Immunol 6:147–153

    Article  CAS  Google Scholar 

  25. Gleixner A, Meyer HHD (1995) Food Agric Immunol 7:221–225

    Article  CAS  Google Scholar 

  26. Petruzzelli E, Ius A, Berta S, Dovis M, Albertini A (1996) Food Agric Immunol 8:3–10

    Article  CAS  Google Scholar 

  27. Rodgers ES, Elliott CT, Wan Po AL, Mackie DP, Scott EM, Kreuter J (1997) Food Agric Immunol 9:159–166

    Google Scholar 

  28. Johansson MA, Hellens KE (2003) Food Agric Immunol 15:197–205

    Article  CAS  Google Scholar 

  29. Zhang GP, Wang XN, Yang JF, Yang YY, **ng GX, Li QM, Zhao D, Chai SJ, Guo JQ (2006) J Immunol Methods 312:27–33

    Article  CAS  Google Scholar 

  30. Lai WH, Xu Y, Fung DY, **ong Y (2007) Asia Pac J Clin Nutr 16:106–110

    CAS  Google Scholar 

  31. Lai WH, Fung DY, Xu Y, **ong YH (2008) J Food Prot 71:865–869

    CAS  Google Scholar 

  32. Kolosova AY, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C (2007) Anal Bioanal Chem 389:2103–2107

    Article  CAS  Google Scholar 

  33. Courtheyn D, Bakeroot V, De Volder F, Vercammen J (1994) Food Agric Immunol 6:131–139

    Article  CAS  Google Scholar 

  34. Drsch I, Malucelli A, Meyer HHD (1994) Food Agric Immunol 6:141–145

    Article  Google Scholar 

  35. Cerni L, Biancotto G, Tondolo A, Bogoni P (1998) Food Agric Immunol 10:307–315

    Article  CAS  Google Scholar 

  36. Cooper AD, Shepherd MJ (1996) Food Agric Immunol 8:205–213

    Article  CAS  Google Scholar 

  37. Wang JP, Shen JZ (2007) Food Agric Immunol 18:107–115

    Article  CAS  Google Scholar 

  38. Vanoosthuyze K, Van Peteghem C, Courtheyn D, Vercammen J (1994) Food Agric Immunol 6:241–249

    Article  CAS  Google Scholar 

  39. Hayat MA (1989) Colloidal Gold: Principles, Methods and Applications. Academic Press, New York, p 421

    Google Scholar 

  40. Yokota S, Fujimori O (1992) Methods of Immunogold Staining. Soft Science Publications, Japan

    Google Scholar 

  41. Qian S, Bau HH (2004) Anal Biochem 326:211–224

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Important Science and Technology Specific Program of Zhejiang Province (Grant No. 2006C12102) and the Innovation Fund for Technology-based Firms from the Ministry of Science and Technology of China (Grant No. 08C26213300756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Zhou Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, MZ., Wang, MZ., Chen, ZL. et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal Bioanal Chem 395, 2591–2599 (2009). https://doi.org/10.1007/s00216-009-3181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3181-2

Keywords

Navigation