Log in

Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 µg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.

A method is introduced based on ionic liquid dispersive liquid–liquid microextraction (IL DLLME) in which an in-situ metathesis reaction forms a water immiscible ionic liquid that pre-concentrates aromatic compounds from water followed by separation using high performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitra S (2003) Sample preparation techniques in analytical chemistry. Wiley-IEEE, New York

    Book  Google Scholar 

  2. Pena-Pereira F, Lavilla I, Bendicho C (2009) Spectrochim Acta Part B 64:1–15

    Article  Google Scholar 

  3. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley, New York

    Google Scholar 

  4. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Anal Bioanal Chem 393:781–795

    Article  CAS  Google Scholar 

  5. Liu S, Dasgupta PK (1995) Anal Chem 67:2042–2049

    Article  CAS  Google Scholar 

  6. Genfa Z, Dasgupta PK (2000) Anal Chem 72:3165–3170

    Article  Google Scholar 

  7. Jeannot MA, Cantwell FF (1996) Anal Chem 68:2236–2240

    Article  CAS  Google Scholar 

  8. He Y, Lee HK (1997) Anal Chem 69:4634–4640

    Article  CAS  Google Scholar 

  9. Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  10. Rasmussen KE, Pedersen-Bjergaard S (2004) Trends Anal Chem 23:1–10

    Article  CAS  Google Scholar 

  11. Hinze WL, Pramauro EA (1993) Crit Rev Anal Chem 24:133–177

    Article  CAS  Google Scholar 

  12. Frankewlch RP, Hinze WL (1994) Anal Chem 66:944–954

    Article  Google Scholar 

  13. Almeida Bezerra M, Arruda MAZ, Ferreira SLC (2005) Appl Spectrosc Rev 40:269–299

    Article  Google Scholar 

  14. Paleologos EK, Giokas DL, Karayannis MI (2005) Trend Anal Chem 24:426–436

    Article  CAS  Google Scholar 

  15. Dallali N, Zahedi MM, Yamimi Y, Agrawal YK (2009) Rev Anal Chem 28:125–136

    CAS  Google Scholar 

  16. Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández Laespada E (2000) J Chromatogr A 902:251–265

    Article  Google Scholar 

  17. Tohru S, Hinze WL (1995) Talanta 42:119–127

    Article  Google Scholar 

  18. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogra A 1116:1–9

    Article  CAS  Google Scholar 

  19. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogra A 1123:1–9

    Article  CAS  Google Scholar 

  20. Farina L, Boido E, Carrau F, Dellacassa E (2007) J Chromatogra A 1157:46–50

    Article  CAS  Google Scholar 

  21. Chiang JS, Huang SD (2008) Talanta 75:70–75

    Article  CAS  Google Scholar 

  22. Zhao EC, Zhao WT, Han LJ, Jiang SR, Zhou ZQ (2007) J Chromatogra A 1175:137–140

    Article  CAS  Google Scholar 

  23. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876

    Article  CAS  Google Scholar 

  24. Yao C, Pitner W, Anderson JL (2009) Anal Chem 81:5054–5063

    Article  CAS  Google Scholar 

  25. Liu JF, Li N, Jiang GB, Liu JM, Jönsson J, Wen MJ (2005) J Chromatogr A 1066:27–32

    Article  CAS  Google Scholar 

  26. Zhao F, Meng Y, Anderson JL (2008) J Chromatogr A 1208:1–9

    Article  CAS  Google Scholar 

  27. Zhou Q, Bai H, **e G, **ao J (2008) J Chromatogr A 1177:43–49

    Article  CAS  Google Scholar 

  28. Zhou Q, Bai H, **e G, **ao J (2008) J Chromatogr A 1188:148–153

    Article  CAS  Google Scholar 

  29. Mallah MH, Shemirani F, Maragheh MG (2009) Environ Sci Technol 43:1947–1951

    Article  CAS  Google Scholar 

  30. Zhou Q, Zhang X, **ao J (2009) J Chromatogr A 1216:4361–4365

    Article  CAS  Google Scholar 

  31. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891

    Article  CAS  Google Scholar 

  32. Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  33. Lord H, Pawliszyn J (2000) J Chromatogr A 902:167–194

    Article  Google Scholar 

Download references

Acknowledgements

J.L.A. acknowledges funding from the Analytical and Surface Chemistry Program in the Division of Chemistry and the Separation and Purification Processes Program in the Chemical, Environmental, Bioengineering, and Transport Systems Division from the National Science Foundation for a CAREER grant (CHE-0748612)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared L. Anderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, C., Anderson, J.L. Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem 395, 1491–1502 (2009). https://doi.org/10.1007/s00216-009-3078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3078-0

Keywords

Navigation