Log in

Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The present work aims to investigate the elastic constants and their related mechanical parameters, acoustic wave speeds, piezoelectric coefficients and thermal properties of cubic zinc-blende AlN and their pressure dependence up to 5 GPa. The calculations are performed using the pseudopotential plane-wave method within the frame work of the density functional perturbation theory in the local density approximation for the exchange–correlation functional. The accord between our results and the experimental and previous theoretical data reported in the literature is found to be generally reasonably good. It is found that the surface acoustic wave speeds decrease with increasing pressure for both [100] and [110] crystallographic directions, while both elastic stiffness constants and piezoelectric coefficients increase under applied pressure. The variation of the features of interest as a function of pressure shows almost a linear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ponce FA, Bour DP (1997) Nature 386:351

    Article  CAS  Google Scholar 

  2. Orton JW, Foxon CT (1998) Rep Prog Phys 61:1

    Article  CAS  Google Scholar 

  3. Jain SC, Willander M, Narayan J, van Overstraeten R (2000) J Appl Phys 87:965

    Article  CAS  Google Scholar 

  4. Bouarissa N, Kassali K (2001) Phys Stat Sol B 228:663

    Article  CAS  Google Scholar 

  5. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815

    Article  CAS  Google Scholar 

  6. Bouarissa N (2002) Phys Stat Sol B 231:391

    Article  CAS  Google Scholar 

  7. Bouarissa N (2002) Mater Chem Phys 73:51

    Article  CAS  Google Scholar 

  8. Vurgaftman I, Meyer JR (2003) J Appl Phys 94:3675

    Article  CAS  Google Scholar 

  9. Edgar JH (ed) (1994) Properties of group-III nitrides. EMIS Data-review Series IEE, London

    Google Scholar 

  10. Saib S, Bouarissa N (2006) J Phys Chem Sol 67:1888

    Article  CAS  Google Scholar 

  11. Jonnard P, Capron N, Semond F, Massies J, Martinez-Guerrero E, Mariette H (2004) Eur Phys J B 42:351

    Article  CAS  Google Scholar 

  12. **a H, **a Q, Ruoff AL (1993) Phys Rev B 47:12925

    Article  CAS  Google Scholar 

  13. Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K (1994) Phys Rev B 49:14

    Article  CAS  Google Scholar 

  14. Petrov I, Mojab E, Powell RC, Greene JE, Hultman L, Sundgren J-E (1992) Appl Phys Lett 60:2491

    Article  CAS  Google Scholar 

  15. Cheng YC, Wu XL, Zhu J, Xu LL, Li SH, Chu PK (2008) J Appl Phys 103:073707

    Article  Google Scholar 

  16. Holzapfel WB (1996) Rep Prog Phys 59:29

    Article  CAS  Google Scholar 

  17. Badding JV (1998) Annu Rev Mater Sci 28:631

    Article  CAS  Google Scholar 

  18. Bouarissa N (2011) Phys B 406:2583

    Article  CAS  Google Scholar 

  19. Van Schilfgaarde M, Sher A, Chen AB (1997) J Cryst Growth 178:8

    Article  Google Scholar 

  20. Saib S, Bouarissa N (2005) Eur Phys J B 47:379

    Article  CAS  Google Scholar 

  21. Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) Phys B 403:4059

    Article  CAS  Google Scholar 

  22. Verma UP, Bisht PS (2010) Solid State Sci 12:665

    Article  CAS  Google Scholar 

  23. Tan X, **n Z, Liu X, Mu Q (2013) Adv Mat Res 821–822:841

    Google Scholar 

  24. The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org

  25. Baroni S, Giannozzi P, Testa A (1987) Phys Rev Lett 58:1861

    Article  CAS  Google Scholar 

  26. Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) J Appl Phys 103:013506

    Article  Google Scholar 

  27. Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) J Appl Phys 104:076107

    Article  Google Scholar 

  28. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  29. Fuchs M, Da Silva JLF, Stampfl C, Neugebauer J, Scheffler M (2002) Phys Rev B 65:245212

    Article  Google Scholar 

  30. Kanoun MB, Goumri-Said S, Merad AE, Merad G, Cibert J, Aourag H (2004) Semicond Sci Technol 19:1220

    Article  CAS  Google Scholar 

  31. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703

    Article  CAS  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  33. Kaurav N, Kuo YK, Joshi G, Choudhary KK, Varshney D (2008) High Press Res 28:651

    Article  CAS  Google Scholar 

  34. Bouarissa N (2006) Mater Chem Phys 100:41

    Article  CAS  Google Scholar 

  35. Algarni H, Al-Hagan OA, Bouarissa N, Khan MA, Alhuwaymel TF (2017) Infrared Phys Technol 86:176

    Article  CAS  Google Scholar 

  36. Rai DP, Ghimire MP, Thapa RK (2014) Semiconductors 48:1411

    Article  CAS  Google Scholar 

  37. Zagorac J, Zagorac D, Jovanović D, Luković J, Matović B (2018) J Phys Chem Sol 122:94

    Article  CAS  Google Scholar 

  38. Rahaman MZ, Ali ML, Rahman MA (2018) Chin J Phys 56:231

    Article  CAS  Google Scholar 

  39. Daoud S, Bioud N, Lebga N (2019) Chin J Phys 57:165

    Article  CAS  Google Scholar 

  40. Wang SQ, Ye HQ (2003) Phys Status Solidi B 240:45

    Article  CAS  Google Scholar 

  41. Adachi S (1992) Physical properties of III-V semiconductor compounds. Wiley, New York, p 25

    Book  Google Scholar 

  42. Adachi S (2005) Properties of group-IV, III–V and II–VI semiconductors. Wiley, Chichester

    Book  Google Scholar 

  43. Varshney D, Joshi G, Kaurav N, Singh RK (2009) J Phys Chem Solids 70:451

    Article  CAS  Google Scholar 

  44. Karch K, Wagner JM, Bechstedt F (1998) Phys Rev B 57:7043

    Article  CAS  Google Scholar 

  45. Linghu Y, Wu X, Wang R, Li W, Liu Q (2017) J Electron Mater 46:1914

    Article  CAS  Google Scholar 

  46. Yang J (2009) Special topics in the theory of piezoelectricity. Springer, LLC

    Book  Google Scholar 

  47. Lüthi B (2005) Physical acoustics in the solid state. Springer, Berlin

    Book  Google Scholar 

  48. Bo L, **ao C, Hualin C, Mohammad MA, **angguang T, Luqi T, Yi Y, Tianling R (2016) J Semicond 37:021001

    Article  Google Scholar 

  49. Bouarissa N, Atik Y (2008) Mod Phys Lett B 22:1221

    Article  CAS  Google Scholar 

  50. Ypma TJ (1995) SIAM Rev 37:531

    Article  Google Scholar 

  51. Bu G, Ciplys D, Shur M, Schowalter LJ, Schujman S, Gaska R (2006) IEEE Trans Ultrason Ferroelectr Freq Control 53:251

    Article  Google Scholar 

  52. Daoud S, Bioud N, Bouarissa N (2015) Mater Sci Semicond Process 31:124

    Article  CAS  Google Scholar 

  53. Daoud S, Bioud N, Lebga N (2013) Pramana. J Phys 81:885

    CAS  Google Scholar 

  54. Yong JZ, Hong MS, **ng WT, Fei YJ (2010) Mol Phys 108:1641

    Article  Google Scholar 

  55. Zhang W, Cheng Y, Zhu J, Chen XR (2009) Chin Phys B 18:1207

    Article  Google Scholar 

  56. Wang S (2009) Phys Status Solidi B 246:1618

    Article  CAS  Google Scholar 

  57. Daoud S, Bouarissa N (2019) Comput Condens Matter 19:e00359

    Article  Google Scholar 

  58. Kumar V, Jha V, Shrivastava AK (2010) Cryst Res Technol 45:920

    Article  CAS  Google Scholar 

  59. Yaddanapudi K (2018) AIP Adv 8:125006

    Article  Google Scholar 

  60. MacChesney JB, Bridenbaugh PM, O’Connor PB (1970) Mater Res Bull 5:783

    Article  CAS  Google Scholar 

  61. Martienssen W, Main F (2005) Semiconductors. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data. S**er, Berlin, pp 575–694

    Chapter  Google Scholar 

  62. Goldberg Y (2001) In: Levinshtein ME, Rumyantsev SL, Shur MS (eds) Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 31–47

  63. Chen H, Lei X, Long J, Huang W (2014) Mater Sci Semicond Process 27:207

    Article  CAS  Google Scholar 

  64. Davydov SY, Tikhonov SK (1996) Semiconductors 30:514

    Google Scholar 

  65. Shimada K, Sota T, Suzuki K (1998) J Appl Phys 84:4951

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, S., Bouarissa, N. Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure. Theor Chem Acc 138, 49 (2019). https://doi.org/10.1007/s00214-019-2439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2439-9

Keywords

Navigation