Log in

The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Rats, like humans, are susceptible to the reinforcing effects of reward-related stimuli presented within a compound stimulus array, putatively analogous to the so-called near-miss effect. We have previously demonstrated using a rodent slot machine task (rSMT) that the reward expectancy these stimuli elicit is critically mediated by the dopamine D4 receptor. D4 receptors are principally located in prefrontal regions activated during slot machine play in humans, such as the insular cortex. The insula has recently attracted considerable interest as it appears to play a crucial role in substance and behavioral addictions. However, the insula is a heterogeneous area, and the relative contributions of subregions to addictive behaviors are unclear.

Methods

Male Long Evans rats were trained to perform the rSMT, and then bilateral cannula targeting either the granular or agranular insula were implanted. The effects of inactivation and local administration of a D4 agonist were investigated.

Results

Temporary inactivation of the agranular, but not the granular insula impaired performance on the rSMT. In contrast, local infusion of the D4 agonist PD168077 into the agranular insula had no effect on task performance, but when administered into the granular insula, it improved animals’ ability to differentiate winning from non-winning trials. The agranular insula may therefore modulate decision making when conflicting stimuli are present, potentially due to its role in generating a cohesive emotional percept based on both externally and internally generated signals, whereas the granular insular is not critical for this process. Nevertheless, D4 receptors within the granular insula may amplify the incentive salience of aversive environmental stimuli.

Discussion

These data provide insight into the neurobiological mechanism underpinning maladaptive reward expectancy during gambling and provide further evidence that D4 receptors represent a potential target for develo** pharmacotherapies for problem gambling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE, Block RC, van Wijngaarden E (2015) Damage to the insula leads to decreased nicotine withdrawal during abstinence. Addiction 110:1994–2003

    Article  PubMed  Google Scholar 

  • Allen GV, Saper CB, Hurley KM, Cechetto DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311:1–16

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  PubMed  Google Scholar 

  • Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71:749–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  • Breen RB, Zimmerman M (2002) Rapid onset of pathological gambling in machine gamblers. J Gambl Stud 18:31–43

    Article  PubMed  Google Scholar 

  • Cador M, Robbins TW, Everitt BJ (1989) Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30:77–86

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS (2011) A gustotopic map of taste qualities in the mammalian brain. Science 333:1262–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark L (2010) Decision-making during gambling: an integration of cognitive and psychobiological approaches. Philos Trans R Soc Lond B Biol Sci 365:319–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark L, Bechara A, Damasio H, Aitken MR, Sahakian BJ, Robbins TW (2008) Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain J Neurol 131:1311–1322

    Article  CAS  Google Scholar 

  • Clark L, Lawrence AJ, Astley-Jones F, Gray N (2009) Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 61:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark L, Studer B, Bruss J, Tranel D, Bechara A (2014) Damage to insula abolishes cognitive distortions during simulated gambling. Proc Natl Acad Sci U S A 111:6098–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocker PJ, Winstanley CA (2015) Irrational beliefs, biases and gambling: exploring the role of animal models in elucidating vulnerabilities for the development of pathological gambling. Behav Brain Res 279:259–273

    Article  CAS  PubMed  Google Scholar 

  • Cocker PJ, Le Foll B, Rogers RD, Winstanley CA (2014) A selective role for dopamine D(4) receptors in modulating reward expectancy in a rodent slot machine task. Biol Psychiatry 75:817–824

    Article  CAS  PubMed  Google Scholar 

  • Cocker PJ, Hosking JG, Murch WS, Clark L, Winstanley CA (2016) Activation of dopamine D receptors within the anterior cingulate cortex enhances the erroneous expectation of reward on a rat slot machine task. Neuropharmacology 105:186–195

    Article  CAS  PubMed  Google Scholar 

  • Cosme CV, Gutman AL, LaLumiere RT (2015) The dorsal agranular insular cortex regulates the cued reinstatement of cocaine-seeking, but not food-seeking, behavior in rats. Neuropsychopharmacology 40:2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Cote D, Caron A, Aubert J, Desrochers V, Ladouceur R (2003) Near wins prolong gambling on a video lottery terminal. J Gambl Stud 19:433–438

    Article  PubMed  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro NC, Mashhoon Y, Heaney C, Yager LM, Kantak KM (2008) Role of dopamine D1 receptors in the prefrontal dorsal agranular insular cortex in mediating cocaine self-administration in rats. Psychopharmacology 200:81–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Droutman V, Read SJ, Bechara A (2015) Revisiting the role of the insula in addiction. Trends Cogn Sci 19:414–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Forget B, Pushparaj A, Le Foll B (2010) Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol Psychiatry 68:265–271

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    Article  CAS  PubMed  Google Scholar 

  • Hosking JG, Cocker PJ, Winstanley CA (2014) Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol

  • Ishii H, Ohara S, Tobler PN, Tsutsui K, Iijima T (2012) Inactivating anterior insular cortex reduces risk taking. J Neurosci 32:16031–16039

    Article  CAS  PubMed  Google Scholar 

  • Kassinove JI, Schare ML (2001) Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychol Addict Behav 15:155–158

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto-Yoshida I, Liu H, Chen BT, Fontanini A, Bonci A (2015) Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proc Natl Acad Sci U S A 112:1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutlu MG, Burke D, Slade S, Hall BJ, Rose JE, Levin ED (2013) Role of insular cortex D(1) and D(2) dopamine receptors in nicotine self-administration in rats. Behav Brain Res 256:273–278

    Article  CAS  PubMed  Google Scholar 

  • Lauzon NM, Laviolette SR (2010) Dopamine D-4-receptor modulation of cortical neuronal network activity and emotional processing: implications for neuropsychiatric disorders. Behav Brain Res 208:12–22

    Article  CAS  PubMed  Google Scholar 

  • Lauzon NM, Bishop SF, Laviolette SR (2009) Dopamine D1 versus D4 receptors differentially modulate the encoding of salient versus nonsalient emotional information in the medial prefrontal cortex. J Neurosci 29:4836–4845

    Article  CAS  PubMed  Google Scholar 

  • Lauzon NM, Ahmad T, Laviolette SR (2012) Dopamine D4 receptor transmission in the prefrontal cortex controls the salience of emotional memory via modulation of calcium calmodulin-dependent kinase II. Cereb Cortex 22:2486–2494

    Article  PubMed  Google Scholar 

  • Lesieur HR (1979) The compulsive gambler’s spiral of options and involvement. Psychiatry 42:79–87

    CAS  PubMed  Google Scholar 

  • McHugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA (2013) Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abuse 39:424–432

    Article  PubMed  Google Scholar 

  • Mizoguchi H, Katahira K, Inutsuka A, Fukumoto K, Nakamura A, Wang T, Nagai T, Sato J, Sawada M, Ohira H, Yamanaka A, Yamada K (2015) Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proc Natl Acad Sci U S A 112:E3930–E3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murch WS, Clark L (2015) Games in the brain: neural substrates of gambling addiction. Neuroscientist

  • Naqvi NH, Bechara A (2009) The hidden island of addiction: the insula. Trends Neurosci 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noel X, Brevers D, Bechara A (2013) A neurocognitive approach to understanding the neurobiology of addiction. Curr Opin Neurobiol 23:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes SL, Balleine BW (2013) Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. J Neurosci 33:8753–8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes SL, Bradfield LA, Balleine BW (2015) Interaction of insular cortex and ventral striatum mediates the effect of incentive memory on choice between goal-directed actions. J Neurosci 35:6464–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulus MP, Stein MB (2006) An insular view of anxiety. Biol Psychiatry 60:383–387

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic co-ordinates, 4 edn. Academic Press, Sydney

  • Potenza MN (2006) Should addictive disorders include non-substance-related conditions? Addiction 101(Suppl 1):142–151

    Article  PubMed  Google Scholar 

  • Potenza MN (2008) Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc Lond B Biol Sci 363:3181–3189

    Article  PubMed  PubMed Central  Google Scholar 

  • Pushparaj A, Kim AS, Musiol M, Trigo JM, Le Foll B (2015a) Involvement of the rostral agranular insular cortex in nicotine self-administration in rats. Behav Brain Res 290:77–83

    Article  CAS  PubMed  Google Scholar 

  • Pushparaj A, Kim AS, Musiol M, Zangen A, Daskalakis ZJ, Zack M, Winstanley CA, Le Foll B (2015b) Differential involvement of the agranular vs granular insular cortex in the acquisition and performance of choice behavior in a rodent gambling task. Neuropsychopharmacology

  • Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci Off J Soc Neurosci 25:11757–11767

    Article  CAS  Google Scholar 

  • Rivera A, Penafiel A, Megias M, Agnati LF, Lopez-Tellez JF, Gago B, Gutierrez A, de la Calle A, Fuxe K (2008) Cellular localization and distribution of dopamine D(4) receptors in the rat cerebral cortex and their relationship with the cortical dopaminergic and noradrenergic nerve terminal networks. Neuroscience 155:997–1010

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Cador M, Taylor JR, Everitt BJ (1989) Limbic-striatal interactions in reward-related processes. Neurosci Biobehav Rev 13:155–162

    Article  CAS  PubMed  Google Scholar 

  • Samanez-Larkin GR, Hollon NG, Carstensen LL, Knutson B (2008) Individual differences in insular sensitivity during loss anticipation predict avoidance learning. Psychol Sci 19:320–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz W, Romo R (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63:607–624

    CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Seif T, Chang SJ, Simms JA, Gibb SL, Dadgar J, Chen BT, Harvey BK, Ron D, Messing RO, Bonci A, Hopf FW (2013) Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci 16:1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 35:27–47

    Article  Google Scholar 

  • Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399:440–468

    Article  CAS  PubMed  Google Scholar 

  • Singer T, Critchley HD, Preuschoff K (2009) A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 13:334–340

    Article  PubMed  Google Scholar 

  • St Onge JR, Floresco SB (2010) Prefrontal cortical contribution to risk-based decision making. Cereb Cortex 20:1816–1828

    Article  PubMed  Google Scholar 

  • Sterzer P, Kleinschmidt A (2010) Anterior insula activations in perceptual paradigms: often observed but barely understood. Brain Struct Funct 214:611–622

    Article  PubMed  Google Scholar 

  • Sylvain C, Ladouceur R, Boisvert JM (1997) Cognitive and behavioral treatment of pathological gambling: a controlled study. J Consult Clin Psychol 65:727–732

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage 19:513–531

    Article  PubMed  Google Scholar 

  • Weller JA, Levin IP, Shiv B, Bechara A (2009) The effects of insula damage on decision-making for risky gains and losses. Soc Neurosci 4:347–358

    Article  PubMed  Google Scholar 

  • Winstanley CA, Cocker PJ, Rogers RD (2011) Dopamine modulates reward expectancy during performance of a slot machine task in rats: evidence for a ‘near-miss’ effect. Neuropsychopharmacology 36:913–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worhunsky PD, Malison RT, Rogers RD, Potenza MN (2014) Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend 145:77–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Pushparaj A, Le Strat Y, Gamaleddin I, Barnes C, Justinova Z, Goldberg SR, Le Foll B (2012) Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats. Neuropsychopharmacology 37:685–696

    Article  CAS  PubMed  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ (1988) The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav 42:223–229

    Article  CAS  PubMed  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TMK, Allen JM, Mizumori SJY, Bonci A, Palmiter RD (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:620–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by an operating grant awarded to CAW from the Canadian Institutes of Health Research (CIHR) and a Level II award from the Ontario Problem Gambling Research Council (OPGRC) to CAW and BJF. CAW also received salary support through the Michael Smith Foundation for Health Research and CIHR New Investigator Award program. PJC is funded through a graduate student award from Parkinson’s Society Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. J. Cocker or C. A. Winstanley.

Ethics declarations

Disclosure

CAW has previously consulted for Shire on an unrelated matter. The authors do not have any other conflicts of interest or financial disclosures to make

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocker, P.J., Lin, M.Y., Barrus, M.M. et al. The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy. Psychopharmacology 233, 3135–3147 (2016). https://doi.org/10.1007/s00213-016-4355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4355-1

Keywords

Navigation