Log in

Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rational

Neuropathic pain is frequently comorbid with sleep disturbances. Paeoniflorin, a main active compound of total glucosides of paeony, has been well documented to exhibit neuroprotective bioactivity.

Objective

The present study evaluated effects of paeoniflorin on neuropathic pain and associated insomnia and the mechanisms involved.

Methods

The analgesic and hypnotic effects of paeoniflorin were measured by mechanical threshold and thermal latency, electroencephalogram (EEG) and electromyogram, and c-Fos expression in a neuropathic pain insomnia model.

Results

The data revealed that paeoniflorin (50 or 100 mg/kg, i.p.) significantly increased the mechanical threshold and prolonged the thermal latency in partial sciatic nerve ligation (PSNL) mice. Meanwhile, paeoniflorin increased non-rapid eye movement (NREM) sleep amount and concomitantly decreased wakefulness time. However, pretreatment with l,3-dimethy-8-cyclopenthylxanthine, an adenosine A1 receptor (R, A1R) antagonist, abolished the analgesic and hypnotic effects of paeoniflorin. Moreover, paeoniflorin at 100 mg/kg failed to change mechanical threshold and thermal latency and NREM sleep in A1R knockout PSNL mice. Immunohistochemical study showed that paeoniflorin inhibited c-Fos overexpression induced by PSNL in the anterior cingulate cortex and ventrolateral periaqueductal gray.

Conclusions

The present findings indicated that paeoniflorin exerted analgesic and hypnotic effects via adenosine A1Rs and might be of potential use in the treatment of neuropathic pain and associated insomnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res 1304:96–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anastassiou E, Iatrou CA, Vlaikidis N, Vafiadou M, Stamatiou G, Plesia E, Lyras L, Vadalouca A (2011) Impact of pregabalin treatment on pain, pain-related sleep interference and general well-being in patients with neuropathic pain: a non-interventional, multicentre, post-marketing study. Clin Drug Investig 31:417–426

    Article  PubMed  CAS  Google Scholar 

  • Argoff CE (2007) The coexistence of neuropathic pain, sleep, and psychiatric disorders: a novel treatment approach. Clin J Pain 23:15–22

    Article  PubMed  Google Scholar 

  • Bagley EE, Vaughan CW, Christie MJ (1999) Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal grey neurons. J Physiol 516:219–225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819

    Article  PubMed  Google Scholar 

  • Barros TA, de Freitas LA, Filho JM, Nunes XP, Giulietti AM, de Souza GE, dos Santos RR, Soares MB, Villarreal CF (2010) Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J Pharm Pharmacol 62:205–213

    Article  PubMed  CAS  Google Scholar 

  • Benington JH, Kodali SK, Heller HC (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 692:79–85

    Article  PubMed  CAS  Google Scholar 

  • Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Methods 26:149–159

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Chen CR, Zhou XZ, Luo YJ, Huang ZL, Urade Y, Qu WM (2012) Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice. Neuropharmacology 63:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Cheng JT, Wang CJ, Hsu FL (1999) Paeoniflorin reverses guanethidine-induced hypotension via activation of central adenosine A1 receptors in Wistar rats. Clin Exp Pharmacol Physiol 26:815–816

    Article  PubMed  CAS  Google Scholar 

  • Chokroverty S (2000) Diagnosis and treatment of sleep disorders caused by co-morbid disease. Neurology 54:S8–S15

    Article  PubMed  CAS  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc 46:208–209

    Article  PubMed  CAS  Google Scholar 

  • Essawy SS, Elbaz AA (2013) Role of adenosine receptors in the anti-nociceptive effects of allopurinol in mice. Eur Rev Med Pharmacol Sci 17:1857–1863

    PubMed  CAS  Google Scholar 

  • Fredholm BB, IJerzman AP, Jacobson KA, Linden J, Muller CE, International Union of Basic and Clinical Pharmacology (2011) LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gao X, Lu Q, Chou G, Wang Z, Pan R, **a Y, Hu H, Dai Y (2014) Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain 18:939–948

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13:883–888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gong QJ, Li YY, **n WJ, Wei XH, Cui Y, Wang J, Liu Y, Liu CC, Liu XG (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res 1361:23–30

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Zhang Z, Qu WM (2014) Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol 119:349–371

    Article  PubMed  Google Scholar 

  • ** L, Zhang LM, **e KQ, Ye Y, Feng L (2011) Paeoniflorin suppresses the expression of intercellular adhesion molecule-1 (ICAM-1) in endotoxin-treated human monocytic cells. Br J Pharmacol 164:694–703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hardemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kovacs KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20:665–672

    Article  PubMed  CAS  Google Scholar 

  • Kukkar A, Bali A, Singh N, Jaggi AS (2013) Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res 36:237–251

    Article  PubMed  CAS  Google Scholar 

  • Kuribara H, Higuchi Y, Tadokoro S (1977) Effects of central depressants on rota-rod and traction performances in mice. Jpn J Pharmacol 27:117–126

    Article  PubMed  CAS  Google Scholar 

  • Lautenbacher S, Kundermann B, Krieg JC (2006) Sleep deprivation and pain perception. Sleep Med Rev 10:357–369

    Article  PubMed  Google Scholar 

  • Lee YW, Yaksh TL (1996) Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J Pharmacol Exp Ther 277:1642–1648

    PubMed  CAS  Google Scholar 

  • Lee B, Shin YW, Bae EA, Han SJ, Kim JS, Kang SS, Kim DH (2008) Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch Pharm Res 31:445–450

    Article  PubMed  CAS  Google Scholar 

  • Li Y, van den Pol AN (2008) Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci 28:2814–2819

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Ko HG, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330:1400–1404

    Article  PubMed  CAS  Google Scholar 

  • Lima FO, Souza GR, Verri WA Jr, Parada CA, Ferreira SH, Cunha FQ, Cunha TM (2010) Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 151:506–515

    Article  PubMed  CAS  Google Scholar 

  • Liu ZW, Gao XB (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97:837–848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu DZ, **e KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ (2005) Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br J Pharmacol 146:604–611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu DF, Wei W, Song LH (2006a) Protective effect of paeoniflorin on immunological liver injury induced by bacillus Calmette-Guerin plus lipopolysaccharide: modulation of tumour necrosis factor-alpha and interleukin-6 MRNA. Clin Exp Pharmacol Physiol 33:332–339

    Article  PubMed  CAS  Google Scholar 

  • Liu DZ, Zhao FL, Liu J, Ji XQ, Ye Y, Zhu XZ (2006b) Potentiation of adenosine A1 receptor agonist CPA-induced antinociception by paeoniflorin in mice. Biol Pharm Bull 29:1630–1633

    Article  PubMed  CAS  Google Scholar 

  • Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006c) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148:314–325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu YY, Yin D, Chen L, Qu WM, Chen CR, Laudon M, Cheng NN, Urade Y, Huang ZL (2014) Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacology (Berl) 231:3973–3985

    Article  CAS  Google Scholar 

  • Maione S, de Novellis V, Cappellacci L, Palazzo E, Vita D, Luongo L, Stella L, Franchetti P, Marabese I, Rossi F, Grifantini M (2007) The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 131:281–292

    Article  PubMed  CAS  Google Scholar 

  • Morgado C, Terra PP, Tavares I (2010) Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin. Eur J Pain 14:693–699

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Ozaki S, Ise Y, Yajima Y, Suzuki T (2003) Change in the expression of c-fos in the rat brain following sciatic nerve ligation. Neurosci Lett 352:231–233

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Niikura K, Nanjo-Niikura K, Furuya M, Yamashita A, Saeki M, Matsushima Y, Imai S, Shimizu T, Asato M, Kuzumaki N, Okutsu D, Miyoshi K, Suzuki M, Tsukiyama Y, Konno M, Yomiya K, Matoba M, Suzuki T (2011) Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex. Pain 152:1358–1372

    Article  PubMed  CAS  Google Scholar 

  • Nozaki C, Le Bourdonnec B, Reiss D, Windh RT, Little PJ, Dolle RE, Kieffer BL, Gaveriaux-Ruff C (2012) delta-Opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization. J Pharmacol Exp Ther 342:799–807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Brien EM, Waxenberg LB, Atchison JW, Gremillion HA, Staud RM, McCrae CS, Robinson ME (2010) Negative mood mediates the effect of poor sleep on pain among chronic pain patients. Clin J Pain 26:310–319

    Article  PubMed  Google Scholar 

  • Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A 105:19992–19997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  • Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–245

    Article  PubMed  CAS  Google Scholar 

  • Qu WM, Yue XF, Sun Y, Fan K, Chen CR, Hou YP, Urade Y, Huang ZL (2012) Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice. Br J Pharmacol 167:587–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263:689–692

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raymond I, Nielsen TA, Lavigne G, Manzini C, Choiniere M (2001) Quality of sleep and its daily relationship to pain intensity in hospitalized adult burn patients. Pain 92:381–388

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Gonzalez HI, Ramirez-Aguilar M, Granados-Soto V, Reyes-Garcia JG, Torres-Lopez JE, Huerta-Cruz JC, Navarrete A (2014) Antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rodents. BMC Complement Altern Med 14:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Roehrs T, Roth T (2005) Sleep and pain: interaction of two vital functions. Semin Neurol 25:106–116

    Article  PubMed  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  PubMed  CAS  Google Scholar 

  • Sowa NA, Voss MK, Zylka MJ (2010) Recombinant ecto-5′-nucleotidase (CD73) has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation. Mol Pain 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T (2003) Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res 12:283–290

    Article  PubMed  Google Scholar 

  • Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Tsai HY, Lin YT, Tsai CH, Chen YF (2001) Effects of paeoniflorin on the formalin-induced nociceptive behaviour in mice. J Ethnopharmacol 75:267–271

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi F, Targa M, Romagnoli R, Merighi S, Gessi S, Baraldi PG, Borea PA, Varani K (2014) TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 81:6–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Yue XF, Qu WM, Tan R, Zheng P, Urade Y, Huang ZL (2013) Morphine inhibits sleep-promoting neurons in the ventrolateral preoptic area via mu receptors and induces wakefulness in rats. Neuropsychopharmacology 38:791–801

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang TX, Yin D, Guo W, Liu YY, Li YD, Qu WM, Han WJ, Hong ZY, Huang ZL (2015) Antinociceptive and hypnotic activities of pregabalin in a neuropathic pain-like model in mice. Pharmacol Biochem Behav 135:31–39

  • Wattiez AS, Libert F, Privat AM, Loiodice S, Fialip J, Eschalier A, Courteix C (2011) Evidence for a differential opioidergic involvement in the analgesic effect of antidepressants: prediction for efficacy in animal models of neuropathic pain? Br J Pharmacol 163:792–803

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson AR, Maher L, Morgan MM (2008) Repeated cannabinoid injections into the rat periaqueductal gray enhance subsequent morphine antinociception. Neuropharmacology 55:1219–1225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu YE, Li YD, Luo YJ, Wang TX, Wang HJ, Chen SN, Qu WM, Huang ZL (2015) Gelsemine alleviates both neuropathic pain and sleep disturbance in partial sciatic nerve ligation mice. Acta Pharmacol Sin. doi:10.1038/aps.2015.86

  • Xu XH, Qiu MH, Dong H, Qu WM, Urade Y, Huang ZL (2014) GABA transporter-1 inhibitor NO-711 alters the EEG power spectra and enhances non-rapid eye movement sleep during the active phase in mice. Eur Neuropsychopharmacol 24:585–594

    Article  PubMed  CAS  Google Scholar 

  • Yu HY, Liu MG, Liu DN, Shang GW, Wang Y, Qi C, Zhang KP, Song ZJ, Chen J (2007) Antinociceptive effects of systemic paeoniflorin on bee venom-induced various ‘phenotypes’ of nociception and hypersensitivity. Pharmacol Biochem Behav 88:131–140

    Article  PubMed  CAS  Google Scholar 

  • Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM (2007) Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: a pertussis toxin-sensitive G protein-dependent process. Anesthesiology 107:797–806

    Article  PubMed  CAS  Google Scholar 

  • Zhang XJ, Li Z, Leung WM, Liu L, Xu HX, Bian ZX (2008) The analgesic effect of paeoniflorin on neonatal maternal separation-induced visceral hyperalgesia in rats. J Pain 9:497–505

    Article  PubMed  CAS  Google Scholar 

  • Zhang XJ, Chen HL, Li Z, Zhang HQ, Xu HX, Sung JJ, Bian ZX (2009) Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway. Pharmacol Biochem Behav 94:88–97

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL (2012) Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 62:843–854

    Article  PubMed  CAS  Google Scholar 

  • Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31:199–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants-in-aid for scientific research from the National Basic Research Program of China (2011CB711000, 2015CB856401, 2009ZX09303-006), the National Natural Science Foundation of China (81420108015, 81301135, 31171010, 31171049, 31121061, 31271164, J1210041, 31471064), a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005), the Shanghai Committee of Science and Technology (13ZR1403200, 14JC1400900, 13dz2260700, 13140903100), and the Shanghai Leading Academic Discipline Project (B119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Yuan Liu, Neng-Neng Cheng or Zhi-Li Huang.

Ethics declarations

Compliance with Ethical Standards

We declare that the experiments comply with the current laws of China.

Conflict of interest

All authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Liu, YY., Wang, TX. et al. Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model. Psychopharmacology 233, 281–293 (2016). https://doi.org/10.1007/s00213-015-4108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4108-6

Keywords

Navigation