Log in

Treatment-resistant depression: are animal models of depression fit for purpose?

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Resistance to antidepressant drug treatment remains a major health problem. Animal models of depression are efficient in detecting effective treatments but have done little to increase the reach of antidepressant drugs. This may be because most animal models of depression target the reversal of stress-induced behavioural change, whereas treatment-resistant depression is typically associated with risk factors that predispose to the precipitation of depressive episodes by relatively low levels of stress. Therefore, the search for treatments for resistant depression may require models that incorporate predisposing factors leading to heightened stress responsiveness.

Method

Using a diathesis-stress framework, we review developmental, genetic and genomic models against four criteria: (i) increased sensitivity to stress precipitation of a depressive behavioural phenotype, (ii) resistance to chronic treatment with conventional antidepressants, (iii) a good response to novel modes of antidepressant treatment (e.g. ketamine; deep brain stimulation) that are reported to be effective in treatment-resistant depression and (iv) a parallel to a known clinical risk factor.

Results

We identify 18 models that may have some potential. All require further validation. Currently, the most promising are the Wistar-Kyoto (WKY) and congenital learned helplessness (cLH) rat strains, the high anxiety behaviour (HAB) mouse strain and the CB1 receptor knockout and OCT2 null mutant mouse strains.

Conclusion

Further development is needed to validate models of antidepressant resistance that are fit for purpose. The criteria used in this review may provide a helpful framework to guide research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  • Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Sykes CE, Francescutti DM, Kuhn DM (2014) Mice genetically depleted of brain serotonin do not display a depression-like behavioral phenotype. ACS Chem Neurosci 5:908–919

    Article  PubMed  CAS  Google Scholar 

  • Bacq A, Balasse L, Biala G, Guiard B, Gardier AM, Schinkel A, Louis F, Vialou V, Martres MP, Chevarin C, Hamon M, Giros B, Gautron S (2012) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17:926–939

    Article  CAS  PubMed  Google Scholar 

  • Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24:410–414

    Article  CAS  PubMed  Google Scholar 

  • Bale TL, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF (2002) Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 22:193–199

    CAS  PubMed  Google Scholar 

  • Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, Tassin JP, Mombereau C, Faure P, Tronche F (2013) Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science 339:332–335

    Article  CAS  PubMed  Google Scholar 

  • Barr CS, Newman TK, Shannon C, Parker C, Dvoskin RL, Becker ML, Schwandt M, Champoux M, Lesch KP, Goldman D, Suomi SJ, Higley JD (2004) Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol Psychiatry 55:733–738

    Article  CAS  PubMed  Google Scholar 

  • Barthas F, Sellmeijer J, Hugel S, Waltisperger E, Barrot M, Yalcin I (2015) The anterior cingulate cortex is a critical hub for pain-induced depression. Biol Psychiatry 77:236–245

    Article  PubMed  Google Scholar 

  • Belujon P, Grace AA (2014) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76(12):927–936. doi:10.1016/j.biopsych.2014.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belzung C (2014) Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology 39(5):1041–1051. doi:10.1038/npp.2013.342

    Article  PubMed Central  PubMed  Google Scholar 

  • Belzung C, Billette De Villemeur E (2010) The design of new antidepressants: can formal models help? A first attempt using a model of the hippocampal control over the HPA axis based on a review from the literature. Behav Pharmacol 21:677–689

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Lemoine M (2011) Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord 1(1):9

    Article  PubMed Central  PubMed  Google Scholar 

  • Belzung C, Willner P, Phillipot P (2015) Depression: from psychopathology to pathophysiology. Curr Opin Neurol 30C:24–30

    Article  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bock C, Bukh JD, Vinberg M, Gether U, Kessing LV (2010) The influence of comorbid personality disorder and neuroticism on treatment outcome in first episode depression. Psychopathology 43:197–204

    Article  PubMed  Google Scholar 

  • Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, Muglia LJ (2005) Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci U S A 102:473–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley RG, Binder EB, Epstein MP, Tang Y, Nair HP, Liu W, Gillespie CF, Berg T, Evces M, Newport DJ, Stowe ZN, Heim CM, Nemeroff CB, Schwartz A, Cubells JF, Ressler KJ (2008) Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 65:190–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bukh JD, Bock C, Vinberg M, Gether U, Kessing LV (2011) Differences between early and late onset adult depression. Clin Pract Epidemiol Ment Health 7:140–147

    Article  PubMed Central  PubMed  Google Scholar 

  • Calabrese F, Molteni R, Cattaneo A, Macchi F, Racagni G, Gennarelli M, Ellenbroek BA, Riva MA (2010) Long-term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol Pharmacol 77:846–853

    Article  CAS  PubMed  Google Scholar 

  • Calatayud F, Belzung C (2001) Emotional reactivity in mice, a case of nongenetic heredity? Physiol Behav 74:355–362

    Article  CAS  PubMed  Google Scholar 

  • Camus V, Kraehenbuhl H, Preisig M, Bula CJ, Waeber G (2004) Geriatric depression and vascular diseases: what are the links? J Affect Disord 81:1–16

    Article  PubMed  Google Scholar 

  • Cao JL, Covington HE 3rd, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han MH (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30:16453–16458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carnevali L, Mastorci F, Audero E, Graiani G, Rossi S, Macchi E (2014) Stress-induced susceptibility to sudden cardiac death in mice with altered serotonin homeostasis. PLoS One 7(7):e41184

    Article  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167:509–527

    Article  PubMed Central  PubMed  Google Scholar 

  • Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 8:43

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaouloff F (2013) Social stress models in depression research: what do they tell us? Cell Tissue Res 354:179–190

    Article  PubMed  Google Scholar 

  • Chen ZY, **g D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL, Lee FS (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314:140–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen MV, Kessing LV (2006) Do personality traits predict first onset in depressive and bipolar disorder? Nord J Psychiatry 60:79–88

    Article  PubMed  Google Scholar 

  • Clark D, Beck AT (2010) Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cogn Sci 14:418–424

    Article  PubMed  Google Scholar 

  • Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419

    Article  CAS  PubMed  Google Scholar 

  • Conboy L, Varea E, Castro JE, Sakouhi-Ouertatani H, Calandra T, Lashuel HA, Sandi C (2011) Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry 16:533–547

    Article  CAS  PubMed  Google Scholar 

  • Conductier G, Dusticier N, Lucas G, Côté F, Debonnel G, Daszuta A, Dumuis A, Nieoullon A, Hen R, Bockaert J, Compan V (2006) Adaptive changes in serotonin neurons of the raphe nuclei in 5-HT(4) receptor knock-out mouse. Eur J Neurosci 24:1053–1062

    Article  PubMed  Google Scholar 

  • Couroussé T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, Le Guisquet AM, Gardier AM, Schinkel AH, Giros B, Gautron S (2014) Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3β signaling. Mol Psychiatry. doi:10.1038/mp.2014.86

    PubMed  Google Scholar 

  • Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S et al (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30:16082–16090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cremers TI, Giorgetti M, Bosker FJ, Hogg S, Arnt J, Mørk A, Honig G, Bøgesø KP, Westerink BH, den Boer H, Wikstrom HV, Tecott LH (2004) Inactivation of 5-HT(2C) receptors potentiates consequences of serotonin reuptake blockade. Neuropsychopharmacology 29:1782–1789

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dalvi A, ** SH, Hirsch BR, Lucki I, Thomas SA (2001) Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 298:651–657

    CAS  PubMed  Google Scholar 

  • Cryan JF, O’Leary OF, ** SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 101:8186–8191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z (2010) Sex differences in animal models of depression and antidepressant response. Basic Clin Pharmacol Toxicol 106:226–233

    Article  CAS  PubMed  Google Scholar 

  • Der-Avakian A, Mazei-Robison MS, Kesby JP, Nestler EJ, Markou A (2014) Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response. Biol Psychiatry 76:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedic N, Touma C, Romanowski CP, Schieven M, Kühne C, Ableitner M, Lu A, Holsboer F, Wurst W, Kimura M, Deussing JM (2012) Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice. Cell Mol Neurobiol 32:815–828

  • Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dienes KA, Hammen C, Henry RM, Cohen AN, Daley SE (2006) The stress sensitization hypothesis: understanding the course of bipolar disorder. J Affect Disord 95:43–49

    Article  PubMed  Google Scholar 

  • Dirks A, de Jongh R, Groenink L, van der Gugten J, Hijzen TH, Olivier B (2001) Footshock-induced sensitization of the acoustic startle response in two strains of mice. Behav Brain Res 123:17–21

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, Heindel W, Young R, Morris P, Arolt V, Deckert J, Suslow T, Baune BT (2008) Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 18:751–759

    Article  CAS  PubMed  Google Scholar 

  • Dournes C, Beeske S, Belzung C, Griebel G (2013) Deep brain stimulation in treatment-resistant depression in mice: comparison with the CRF1 antagonist, SSR125543. Prog Neuropsychopharmacol Biol Psychiatry 40:213–220

    Article  CAS  PubMed  Google Scholar 

  • D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194

    Article  PubMed  Google Scholar 

  • D’Souza MS, Markou A (2010) Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 3:119–178

    Article  PubMed  Google Scholar 

  • Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Hage W, Leman S, Camus V, Belzung C (2013) Mechanisms of antidepressant resistance. Front Pharmacol 4:146

  • El-Hage W, Vourc’h P, Gaillard P, Léger J, Belzung C, Ibarguen-Vargas Y, Andres CR, Camus V (2015) The BDNF Val(66)Met polymorphism is associated with escitalopram response in depressed patients. Psychopharmacology (Berlin) 232:575–581

    Article  CAS  Google Scholar 

  • Enns MW, Cox BJ (1997) Personality dimensions and depression: review and commentary. Can J Psychiatry 42:274–284

    CAS  PubMed  Google Scholar 

  • Feng SF, Shi TY, Fan-Yang, Wang WN, Chen YC, Tan QR (2012) Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res 232:245–251

    Article  PubMed  Google Scholar 

  • Foa EB, Zinbarg R, Rothbaum BO (1992) Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull 112:218–238

    Article  CAS  PubMed  Google Scholar 

  • Franceschelli A, Herchick S, Thelen C, Papadopoulou-Daifoti Z, Pitychoutis PM (2014) Sex differences in the chronic mild stress model of depression. Behav Pharmacol 25:372–383

    CAS  PubMed  Google Scholar 

  • Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambarana C, Scheggi S, Tagliamonte A, Tolu P, De Montis MG (2001) Animal models for the study of antidepressant activity. Brain Res Brain Res Protoc 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov N, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–282

    Article  CAS  PubMed  Google Scholar 

  • Gass N, Cleppien D, Zheng L, Schwarz AJ, Meyer-Lindenberg A, Vollmayr B, Weber-Fahr W, Sartorius A (2014) Functionally altered neurocircuits in a rat model of treatment-resistant depression show prominent role of the habenula. Eur Neuropsychopharmacol 24:381–390

    Article  CAS  PubMed  Google Scholar 

  • Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T (2014) Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 11(11):e1001755

  • Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Bloom F, Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: fifth generation of progress. www.acnp.org/asset.axd?id=a81d38da-94d9-4bea-86d3-244e52f15b2d

  • Grabe HJ, Schwahn C, Appel K, Mahler J, Schulz A, Spitzer C, Fenske K, Barnow S, Lucht M, Freyberger HJ, John U, Teumer A, Wallaschofski H, Nauck M, Völzke H (2010) Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. Am J Med Genet B Neuropsychiatr Genet 153B:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Groenink L, Dirks A, Verdouw PM, Schipholt M, Veening JG, van der Gugten J, Olivier B (2002) HPA axis dysregulation in mice overexpressing corticotropin releasing hormone Biol. Psychiatry 51:875–881

    CAS  Google Scholar 

  • Guilloux JP, David DJ, **a L, Nguyen HT, Rainer Q, Guiard BP, Repérant C, Deltheil T, Toth M, Hen R, Gardier AM (2011) Characterization of 5-HT(1A/1B)−/− mice: an animal model sensitive to anxiolytic treatments. Neuropharmacology 61:478–488

    Article  CAS  PubMed  Google Scholar 

  • Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM (2011) The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 69:301–308

    Article  PubMed  Google Scholar 

  • Hamani C, Machado DC, Hipólide DC, Dubiela FP, Suchecki D, Macedo CE, Tescarollo F, Martins U, Covolan L, Nobrega JN (2012) Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biol Psychiatry 71:30–35

    Article  CAS  PubMed  Google Scholar 

  • Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  • Harkness KL, Bruce AE, Lumley MN (2006) The role of childhood abuse and neglect in the sensitization of stressful life events in adolescent depression. J Abnorm Psychol 115:730–741

    Article  PubMed  Google Scholar 

  • Harro J (2012) Animal models of depression vulnerability. Curr Topics Behav Neurosci. doi:10.1007/7854_2012_221

    Google Scholar 

  • Hebda-Bauer EK, Pletsch A, Darwish H, Fentress H, Simmons TA, Wei Q, Watson SJ, Akil H (2010) Forebrain glucocorticoid receptor overexpression increases environmental reactivity and produces a stress-induced spatial discrimination deficit. Neuroscience 169:645–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heisler LK, Chu H, Brennan TJ, Danao JA, Bajwa P, Parsons LH et al (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A 95:15049–15054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henningsen K, Dyrvig M, Bouzinova EV, Christiansen S, Christensen T, Andreasen JT, Palme R, Lichota J, Wiborg O (2012) Low maternal care exacerbates adult stress susceptibility in the chronic mild stress rat model of depression. Behav Pharmacol 23:735–743

    Article  PubMed  Google Scholar 

  • Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36:2085–2117

    Article  CAS  PubMed  Google Scholar 

  • Hill MN, Kumar SA, Filipski SB, Iverson M, Stuhr KL, Keith JM, Cravatt BF, Hillard CJ, Chattarji S, McEwen BS (2013) Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry 18:1125–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschfeld RM, Russell JM, Delgado PL, Fawcett J, Friedman RA, Harrison WM, Koran LM, Miller IW, Thase ME, Howland RH, Connolly MA, Miceli RJ (1998) Predictors of response to acute treatment of chronic and double depression with sertraline or imipramine. J Clin Psychiatry 59:669–675

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–923

    Article  CAS  PubMed  Google Scholar 

  • Horovitz O, Tsoory MM, Hall J, Jacobson-Pick S, Richter-Levin G (2012) Post-weaning to pre-pubertal (‘juvenile’) stress: a model of induced predisposition to stress-related disorders. Neuroendocrinology 95:56–64

    Article  CAS  PubMed  Google Scholar 

  • Hussain RJ, Jacobson L (2015) Increased antidepressant sensitivity after prefrontal cortex glucocorticoid receptor gene deletion in mice. Physiol Behav 138:113–117

    Article  CAS  PubMed  Google Scholar 

  • Huston JP, Silva MA, Komorowski M, Schulz D, Topic B (2013) Animal models of extinction-induced depression: loss of reward and its consequences. Neurosci Biobehav Rev 37:2059–2070

    Article  PubMed  Google Scholar 

  • Hyde JS, Mezykus AH, Abramson LY (2008) The ABCs of depression: integrating affective, biological, and cognitive models to explain the emergence of the gender difference in depression. Psychol Rev 115:291–313

    Article  PubMed  Google Scholar 

  • Ibarguen-Vargas Y, Surget A, Vourc’h P, Leman S, Andres CR, Gardier AM, Belzung C (2009) Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behav Brain Res 202:245–251

    Article  CAS  PubMed  Google Scholar 

  • Isingrini E, Camus V, Le Guisquet AM, **aud M, Devers S, Belzung C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. Plos One 5:e10404

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ivarsson M, Paterson LM, Hutson PH (2005) Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats. Eur J Pharmacol 522:63–71

    Article  CAS  PubMed  Google Scholar 

  • Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93:807–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juhasz G, Chase D, Pegg E, Downey D, Toth ZG, Stones K, Platt H, Mekli K, Payton A, Elliott R, Anderson IM, Deakin JF (2009) CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology 34:2019–2027

    Article  CAS  PubMed  Google Scholar 

  • Karg K, Burmeiste M, Shedden K, Sen S (2011) The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited. Arch Gen Psychiatry 68:444–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlsson L, Carlsson B, Hiemke C, Ahlner J, Bengtsson F, Schmitt U, Kugelberg FC (2013) Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2013.01.003

    PubMed  Google Scholar 

  • Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15:473–500

    Article  CAS  PubMed  Google Scholar 

  • Kaymaz N, van Os J, Loonen AJ, Nolen WA (2008) Evidence that patients with single versus recurrent depressive episodes are differentially sensitive to treatment discontinuation: a meta-analysis of placebo-controlled randomized trials. J Clin Psychiatry 69:1423–1436

    Article  PubMed  Google Scholar 

  • Keck ME, Welt T, Post A, Muller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001) Neuroendocrine and behavioural effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24:337–349

    Article  CAS  PubMed  Google Scholar 

  • Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R (2003) Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioural and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology 28:235–243

    Article  CAS  PubMed  Google Scholar 

  • Keck ME, Sartori SB, Welt T, Muller MB, Ohl F, Holsboer F, Landgraf R, SIngewald N (2005) Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 92:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Gardner CO (2011) A longitudinal etiologic model for symptoms of anxiety and depression in women. Psychol Med 41:2035–2045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kendler KS, Myers J (2010) The genetic and environmental relationship between major depression and the five-factor model of personality. Psychol Med 40:801–806

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry 157:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2001a) Genetic risk, number of previous depressive episodes, and stressful life events in predicting the onset of major depression. Am J Psychiatry 158:582–586

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Prescott CA (2001b) Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am J Psychiatry 158:587–593

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Kuhn JW, Prescott CA (2004) Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med 34:1475–1482

    Article  PubMed  Google Scholar 

  • Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS, Mayberg HS (2007) Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 164:778–788

    Article  PubMed  Google Scholar 

  • Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA (2005) Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol 25:318–324

    Article  PubMed  Google Scholar 

  • Khemissi W, Farooq RK, Le Guisquet AM, Sakly M, Belzung C (2014) Dysregulation of the hypothalamus-pituitary-adrenal axis predicts some aspects of the behavioral response to chronic fluoxetine: association with hippocampal cell proliferation. Front Behav Neurosci 8:340

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Lee DW, Kim H, Bang E, Chae JH, Choe BY (2014) Chronic repetitive transcranial magnetic stimulation enhances GABAergic and cholinergic metabolism in chronic unpredictable mild stress rat model: 1H-NMR spectroscopy study at 11.7 T. Neurosci Lett 20(572):32–37

    Article  CAS  Google Scholar 

  • Knapman A, Heinzmann JM, Hellweg R, Holsboer F, Landgraf R, Touma C (2010) Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J Psychiatr Res 44:566–575

    Article  CAS  PubMed  Google Scholar 

  • Kolber BJ, Boyle MP, Wieczorek L, Kelley CL, Onwuzurike CC, Nettles SA, Vogt SK, Muglia LJ (2010) Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 30:2571–2581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong H, Sha LL, Fan Y, **ao M, Ding JH, Wu J, Hu G (2009) Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 34:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92:1813–1864

    Article  CAS  PubMed  Google Scholar 

  • Kranzler HR, Feinn R, Nelson EC, Covault J, Anton RF, Farrer L, Gelernter J (2011) A CRHR1 haplotype moderates the effect of adverse childhood experiences on lifetime risk of major depressive episode in African-American women. Am J Med Genet B Neuropsychiatr Genet 156B:960–968

    Article  PubMed  CAS  Google Scholar 

  • Kriston L, von Wolff A, Westphal A, Hölzel LP, Härter M (2014) Efficacy and acceptability of acute treatments for persistent depressive disorder: a network meta-analysis. Depress Anxiety 31:621–630

    Article  CAS  PubMed  Google Scholar 

  • Kvetnanský R, Krizanova O, Tillinger A, Sabban EL, Thomas SA, Kubovcakova L (2008) Regulation of gene expression of catecholamine biosynthetic enzymes in dopamine-beta-hydroxylase- and CRH-knockout mice exposed to stress. Ann N Y Acad Sci 1148:257–268

    Article  PubMed  CAS  Google Scholar 

  • Kwon JS, Kim YM, Chang CG, Park BJ, Kim L, Yoon DJ, Han WS, Lee HJ, Lyoo IK (2000) Three-year follow-up of women with the sole diagnosis of depressive personality disorder: subsequent development of dysthymia and major depression. Am J Psychiatr 157:1966–1972

    Article  CAS  PubMed  Google Scholar 

  • Labermaier C, Kohl C, Hartmann J, Devigny C, Altmann A, Weber P, Arloth J, Quast C, Wagner KV, Scharf SH, Czibere L, Widner-Andrä R, Brenndörfer J, Landgraf R, Hausch F, Jones KA, Müller MB, Uhr M, Holsboer F, Binder EB, Schmidt MV (2014) A polymorphism in the Crhr1 gene determines stress vulnerability in male mice. Endocrinology 155:2500–2510

    Article  PubMed  CAS  Google Scholar 

  • Lahmame A, Gomez F, Armario A (1996) Fawn-hooded rats show enhanced active behaviour in the forced swimming test, with no evidence for pituitary-adrenal axis hyperactivity. Psychopharmacology (Berlin) 125:74–78

    Article  CAS  Google Scholar 

  • Lahmame A, del Arco C, Pazos A, Yritia M, Armario A (1997) Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants? Eur J Pharmacol 22:115–123

    Article  Google Scholar 

  • Laryea G, Muglia L, Arnett M, Muglia LJ (2015) Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol 36:150–164

    Article  CAS  PubMed  Google Scholar 

  • Leykin Y, Amsterdam JD, DeRubeis RJ, Gallop R, Shelton RC, Hollon SD (2007) Progressive resistance to SSRI therapy but not to cognitive therapy in the treatment of moderate to severe major depressive episode. J Consult Clin Psychol 75:267–276

    Article  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D et al (2011a) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011b) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Licinio J, Wong ML (2011) Pharmacogenomics of antidepressant treatment effects. Dialogues Clin Neurosci 13:63–71

    PubMed Central  PubMed  Google Scholar 

  • Liu B, Zhang Y, Li L (2014) Repetitive transcranial magnetic stimulation as an augmentative strategy for treatment-resistant depression, a meta-analysis of randomized, double-blind and sham-controlled study. BMC Psychiatry 14:342

    Article  PubMed Central  PubMed  Google Scholar 

  • Lolait SJ, Stewart LQ, Jessop DS, Young WS 3rd, O’Carroll AM (2007) The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 148:849–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199

    Article  PubMed  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 115:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Seligman MEP (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 1:3–46

    Article  Google Scholar 

  • Maier SF, Watkins LR (2010) Role of the medial prefrontal cortex in co** and resilience. Brain Res 1355:52–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berlin) 159:379–387

    Article  CAS  Google Scholar 

  • Matthews K, Baldo BA, Markou A, Lown O, Overstreet DH, Koob GF (1996) Rewarding electrical brain stimulation: similar thresholds for Flinders Sensitive Line Hypercholinergic and Flinders Resistant Line hypocholinergic rats. Physiol Behav 59:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Mattos GE, Heinzmann JM, Norkowski S, Helbling JC, Minni AM, Moisan MP, Touma C (2013) Corticosteroid-binding globulin contributes to the neuroendocrine phenotype of mice selected for extremes in stress reactivity. J Endocrinol 219:217–229

    Article  CAS  PubMed  Google Scholar 

  • Mayberg HS (2009) Targeted electrode-based modulation of neural circuits for depression. J Clin Invest 119:717–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    CAS  PubMed  Google Scholar 

  • McGrath CL, Kelley ME, Dunlop BW, Holtzheimer PE, Craighead WE, Mayberg HS (2014) Pretreatment brain states identify likely nonresponse to standard treatments for depression. Biol Psychiatry 76(7):527–535. doi:10.1016/j.biopsych.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meerlo P, Overkamp GJ, Koolhaas JM (1997) Behavioural and physiological consequences of a single social defeat in Roman high- and low-avoidance rats. Psychoneuroendocrinology 22:155–168

    Article  CAS  PubMed  Google Scholar 

  • Michopoulos V, Berga SL, Wilson ME (2011) Estradiol and progesterone modify the effects of the serotonin reuptake transporter polymorphism on serotonergic responsivity to citalopram. Exp Clin Psychopharmacol 19:401–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17

    Article  PubMed  Google Scholar 

  • Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Ciesla JA, Garber J (2010) A prospective study of stress autonomy versus stress sensitization in adolescents at varied risk for depression. J Abnorm Psychol 119:341–354

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P, Kormann MS, Droste SK, Kuhn R, Reul JM, Holsboer F, Wurst W (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Muller JM, Morelli E, Ansorge M, Gingrich JA (2011) Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks. Genes Brain Behav 10:166–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nam H, Clinton SM, Jackson NL, Kerman IA (2014) Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front Behav Neurosci 8:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Nanni V, Uher R, Danese A (2012) Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am J Psychiatry 169:141–151

    Article  PubMed  Google Scholar 

  • Nestler EJ (2015) ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol 753:66–72

    Article  CAS  PubMed  Google Scholar 

  • Nierenberg AA, Amsterdam JD (1990) Treatment-resistant depression: definition and treatment approaches. J Clin Psychiatry 51(Suppl):39–47, discussion 48–50

    PubMed  Google Scholar 

  • O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, McDonald WM, Avery D, Fitzgerald PB, Loo C, Demitrack MA, George MS, Sackeim HA (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62:1208–1216

    Article  PubMed  Google Scholar 

  • Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P (2013) SMARCA3, a chromatin remodeling factor, is required for p11-dependent antidepressant action. Cell 152:831–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berlin) 192:357–371

    Article  CAS  Google Scholar 

  • Ono Y, Ando J, Onoda N, Yoshimura K, Momose T, Hirano M, Kanba S (2002) Dimensions of temperament as vulnerability factors in depression. Mol Psychiatry 7:948–953

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH, Wegener G (2013) The Flinders sensitive line rat model of depression—25 years and still producing. Pharmacol Rev 65:143–155

    Article  CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A 95:10734–10739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patti T, Groenink L, Hijzen TH, Oosting RS, Maes RAA, van der Gugten J, Olivier B (2002) Autonomic changes associated with enhanced anxiety in 5-HT1A receptor knockout mice. Neuropsychopharmacology 27:380–390

    Article  Google Scholar 

  • Petersen T, Papakostas GI, Posternak M, Kant A, Guyker WM, Iosifescu DV, Yeung AS, Nierenberg AA, Fava M (2005) Empirical testing of two models for staging antidepressant treatment resistance. J Clin Psychopharmacol 25:336–341

    Article  PubMed  Google Scholar 

  • Philbert J, Pichat P, Beeské S, Decobert M, Belzung C, Griebel G (2011) Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav Brain Res 221:149–154

    Article  CAS  PubMed  Google Scholar 

  • Piras G, Piludu MA, Giorgi O, Corda MG (2014) Effects of chronic antidepressant treatments in a putative genetic model of vulnerability (Roman low-avoidance rats) and resistance (Roman high-avoidance rats) to stress-induced depression. Psychopharmacology (Berlin) 231:43–53

    Article  CAS  Google Scholar 

  • Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Rev 36:183–206

    Article  Google Scholar 

  • Polanczyk G, Caspi A, Williams B, Price TS, Danese A, Sugden K, Uher R, Poulton R, Moffitt TE (2009) Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry 66:978–985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA, Sweatt JD, McMahon L, Bartolucci AA, Li X, Jope RS (2010) Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology 35:1761–1774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porsolt RD, LePichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatment. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Pryce CR, Rüedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29:649–674

    Article  PubMed  Google Scholar 

  • Pucilowski O, Overstreet DH, Rezvani AH, Janowsky DS (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav 54:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Ramboz S, Oosting R, Ait Amara A, Kung HF, Blier P, Mendelsohn M et al (1998) Serotonin receptor 1A knockout: an animal model of anxiety related disorder. Proc Natl Acad Sci U S A 95:14476–14481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ressler KJ, Bradley B, Mercer KB, Deveau TC, Smith AK, Gillespie CF, Nemeroff CB, Cubells JF, Binder EB (2010) Polymorphisms in CRHR1 and the serotonin transporter loci: gene × gene × environment interactions on depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 153B:812–824

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezvani AH, Parsian A, Overstreet DH (2002) The Fawn-Hooded (FH/Wjd) rat: a genetic animal model of comorbid depression and alcoholism. Psychiatr Genet 12:11–16

    Article  Google Scholar 

  • Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hörtnagl H, Flor H, Henn FA, Schütz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 29:6243–6250

    Article  CAS  Google Scholar 

  • Rozeboom AM, Akil H, Seasholtz AF (2007) Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc Natl Acad Sci U S A 104:4688–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rüedi-Bettschen D, Feldon J, Pryce CR (2004) The impaired co** induced by early deprivation is reversed by chronic fluoxetine treatment in adult Fischer rats. Behav Pharmacol 15:413–421

    Article  PubMed  Google Scholar 

  • Rush AJ, Thase ME, Dubé S (2003) Research issues in the study of difficult-to-treat depression. Biol Psychiatry 53:743–753

    Article  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917

    Article  PubMed  Google Scholar 

  • Rush AJ, Wisniewski SR, Zisook S, Fava M, Sung SC, Haley CL, Chan HN, Gilmer WS, Warden D, Nierenberg AA, Balasubramani GK, Gaynes BN, Trivedi MH, Hollon SD (2011) Is prior course of illness relevant to acute or longer-term outcomes in depressed out-patients? A STAR*D report. Psychol Med 19:1–19

    Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castrén E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    CAS  PubMed  Google Scholar 

  • Sah A, Schmuckermair C, Sartori SB, Gaburro S, Kandasamy M, Irschick R, Klimaschewski L, Landgraf R, Aigner L, Singewald N (2012) Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior. Transl Psychiatry 2:e171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salvadore G, Cornwell BR, Colon-Rosario V, Coppola R, Grillon C, Zarate CA Jr, Manji HK (2009) Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol Psychiatry 65:289–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchis-Segura C, Spanagel R, Henn FA, Vollmayr B (2005) Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol 16:267–270

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP (2002) Animal models in biological psychiatry. In: D’Haenen HA, den Boer JA, Willner P (eds) Biological psychiatry. Wiley, Chichester, pp 37–44

    Chapter  Google Scholar 

  • Sartorius A, Mahlstedt MM, Vollmayr B, Henn FA, Ende G (2007) Elevated spectroscopic glutamate/gamma-amino butyric acid in rats bred for learned helplessness. Neuroreport 18:1469–1473

    Article  CAS  PubMed  Google Scholar 

  • Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67(2):e9–e11

    Article  PubMed  Google Scholar 

  • Schmidt MV, Wang XD, Meijer OC (2011) Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology (Berlin) 214:131–140

    Article  CAS  Google Scholar 

  • Schmuckermair C, Gaburro S, Sah A, Landgraf R, Sartori SB, Singewald N (2013) Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology 38:1234–1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz D, Mirrione MM, Henn FA (2010) Cognitive aspects of congenital learned helplessness and its reversal by the monoamine oxidase (MAO)-B inhibitor deprenyl. Neurobiol Learn Mem 93:291–301

    Article  CAS  PubMed  Google Scholar 

  • Serretti A, Kato M, De Ronchi D, Kinoshita T (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 12:247–257

    CAS  PubMed  Google Scholar 

  • Shabel SJ, Murphy RT, Malinow R (2014) Negative learning bias is associated with risk aversion in a genetic animal model of depression. Front Hum Neurosci 8:1. doi:10.3389/fnhum.2014.00001

    Article  PubMed Central  PubMed  Google Scholar 

  • Shapero BG, Black SK, Liu RT, Klugman J, Bender RE, Abramson LY, Alloy LB (2014) Stressful life events and depression symptoms: the effect of childhood emotional abuse on stress reactivity. J Clin Psychol 70:209–223

    Article  PubMed Central  PubMed  Google Scholar 

  • Shumake J, Gonzalez-Lima F (2003) Brain systems underlying susceptibility to helplessness and depression. Behav Cogn Neurosci Rev 2:198–221

    Article  CAS  PubMed  Google Scholar 

  • Shumake J, Poremba A, Edwards E, Gonzalez-Lima F (2000) Congenital helpless rats as a genetic model for cortex metabolism in depression. Neuroreport 11:3793–3798

    Article  CAS  PubMed  Google Scholar 

  • Shumake J, Barrett D, Gonzalez-Lima F (2005) Behavioral characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav Brain Res 164:222–230

    Article  PubMed  Google Scholar 

  • Siddaway AP, Taylor PJ, Wood AM, Schulz J (2015) A meta-analysis of perceptions of defeat and entrapment in depression, anxiety problems, posttraumatic stress disorder and suicidality. J Affect Disord 184:149–159

    Article  PubMed  Google Scholar 

  • Slavich GM, Monroe SM, Gotlib IH (2011) Early parental loss and depression history: associations with recent life stress in major depressive disorder. J Psychiatr Res 45:1146–1152

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Solomon DA, Keller MB, Leon AC, Mueller TI, Lavori PW, Shea MT, Coryell W, Warshaw M, Turvey C, Maser JD, Endicott J (2000) Multiple recurrences of major depressive disorder. Am J Psychiatry 157:229–233

    Article  CAS  PubMed  Google Scholar 

  • Solvason HB, Husain M, Fitgerald PB, Rosenquist P, McCall WV, Kimball J, Glimer W, Demitrack MA, Lisanby SH (2014) Improvement in quality of life with left prefrontal transcranial magnetic stimulation in patients with pharmacoresistant major depression: acute and six month outcomes. Brain Stimul 7:219–225

    Article  CAS  PubMed  Google Scholar 

  • Souery D, Amsterdam J, de Montigny C, Lecrubier Y, Montgomery S, Lipp O, Racagni G, Zohar J, Mendlewicz J (1999) Treatment resistant depression: methodological overview and operational criteria. Eur Neuropsychopharmacol 9:83–91

    Article  CAS  PubMed  Google Scholar 

  • Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K, Kasper S, Lecrubier Y, Montgomery S, Serretti A, Zohar J, Mendlewicz J, Group for the Study of Resistant Depression (2007) Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 68:1062–1070

    Article  PubMed  Google Scholar 

  • Steimer T, Driscoll P (2003) Divergent stress responses and co** styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6:87–100

    Article  CAS  PubMed  Google Scholar 

  • Steiner MA, Wanisch K, Monory K, Marsicano G, Borroni E, Bächli H, Holsboer F, Lutz B, Wotjak CT (2008) Impaired cannabinoid receptor type 1 signaling interferes with stress-co** behavior in mice. Pharmacogenomics J 8:196–208

    Article  CAS  PubMed  Google Scholar 

  • Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW (1994) Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 14:2579–2584

    CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon O (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Stewart LQ, Roper JA, Young WS 3rd, O’Carroll AM, Lolait SJ (2008) The role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants. Psychoneuroendocrinology 33:405–415

    Article  CAS  PubMed  Google Scholar 

  • Stroud CB, Davila J, Moyer A (2008) The relationship between stress and depression in first onsets versus recurrences: a meta-analytic review. J Abnorm Psychol 117:206–213

    Article  PubMed  Google Scholar 

  • Sunderland T, Cohen RM, Molchan S, Lawlor BA, Mellow AM, Newhouse PA et al (1994) High-dose selegiline in treatment-resistant older depressive patients. Arch Gen Psychiatry 51:607–615

    Article  CAS  PubMed  Google Scholar 

  • Surget A, Wang Y, Leman S, Ibarguen-Vargas Y, Edgar N, Griebel G, Belzung C, Sibille E (2009) Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34:1363–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011) Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surget A, Van Nieuwenhujzen P, Heinzmann M, Westphal WP, Touma C, Belzung C (2012) Antidepressant effects in the stress reactivity mouse model. Society for Neuroscience, New Orleans

    Google Scholar 

  • Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG, Greengard P (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Shirayama Y, Muneoka K, Suzuki M, Sato K, Hashimoto K (2013) Personality traits as risk factors for treatment-resistant depression. PLoS One 8(5):e63756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thase ME, Rush AJ (1997) When at first you don’t succeed: sequential strategies for antidepressant nonresponders. J Clin Psychiatry 58(Suppl 1):23–29

    PubMed  Google Scholar 

  • Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    Article  CAS  PubMed  Google Scholar 

  • Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L (2012) Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Neuroscience 213:72–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Touma C, Bunck M, Glasl L, Nussbaumer M, Palme R, Stein H, Wolferstätter M, Zeh R, Zimbelmann M, Holsboer F, Landgraf R (2008) Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 33:839–862

    Article  CAS  PubMed  Google Scholar 

  • Touma C, Fenzl T, Ruschel J, Palme R, Holsboer F, Kimura M, Landgraf R (2009) Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression. PLoS One 4(1):e4325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trillat AC, Malagié I, Bourin M, Jacquot C, Hen R, Gardier AM (1998) Homozygote mice deficient in serotonin 5-HT1B receptor and antidepressant effect of selective serotonin reuptake inhibitors. C R Seances Soc Biol Fil 192:1139–1147

    CAS  PubMed  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatr 163:28–40

    Article  PubMed  Google Scholar 

  • Tsoory M, Richter-Levin G (2006) Learning under stress in the adult rat is differentially affected by ‘juvenile’ or ‘adolescent’ stress. Int J Neuropsychopharmacol 9:713–728

    Article  PubMed  Google Scholar 

  • Tsoory M, Cohen H, Richter-Levin G (2007) Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. Eur Neuropsychopharmacol 17:245–256

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30:15007–15018

    Article  CAS  PubMed  Google Scholar 

  • Uher R, McGuffin P (2008) The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry 13:131–146

    Article  CAS  PubMed  Google Scholar 

  • Uhr M, Grauer MT (2003) abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 37:179–185

    Article  PubMed  Google Scholar 

  • Uhr M, Steckler T, Yassouridis A, Holsboer F (2000) Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 22:380–387

    Article  CAS  PubMed  Google Scholar 

  • Uhr M, Grauer MT, Holsboer F (2003) Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry 54:840–846

    Article  CAS  PubMed  Google Scholar 

  • Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, Dose T, Ebinger M, Rosenhagen M, Kohli M, Kloiber S, Salyakina D, Bettecken T, Specht M, Pütz B, Binder EB, Müller-Myhsok B, Holsboer F (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57:203–209

    Article  CAS  PubMed  Google Scholar 

  • Valverde O, Torrens M (2012) CB1 receptor-deficient mice as a model for depression. Neuroscience 204:193–206

    Article  CAS  PubMed  Google Scholar 

  • van Gaalen MM, Stenzel-Poore M, Holsboer F, Steckler T (2002) Effects of transgenic overproduction of CRH on anxiety-like behaviour Eur. J Neurosci 15:2007–2015

    Google Scholar 

  • Veerakumar A, Challis C, Gupta P, Da J, Upadhyay A, Beck SG, Berton O (2014) Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems. Biol Psychiatry 76:203–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venzala E, García-García AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology (Berlin) 224:313–325

    Article  CAS  Google Scholar 

  • Vincent MY, Jacobson L (2014) Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition. Eur J Neurosci 39:1671–1681

    Article  PubMed Central  PubMed  Google Scholar 

  • Vincent MY, Hussain RJ, Zampi ME, Sheeran K, Solomon MB, Herman JP, Khan A, Jacobson L (2013) Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors. Brain Res 1525:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vinkers CH, Groenink L, Pattij T, Olivier B, Bouwknecht JA (2011) 5-HT(1A) receptor sensitivity in 5-HT(1B) receptor KO mice is unaffected by chronic fluvoxamine treatment. Eur J Pharmacol 667:250–257

    Article  CAS  PubMed  Google Scholar 

  • Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217–221

    Article  CAS  PubMed  Google Scholar 

  • Wang HN, Wang L, Zhang RG, Chen YC, Liu L, Gao F, Nie H, Hou WG, Peng ZW, Tan Q (2014) Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: the role of the endocannabinoid system. J Psychiatr Res 51:79–87

    Article  PubMed  Google Scholar 

  • Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S, Robinson TE, Watson SJ, Seasholtz AF, Akil H (2004) Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci U S A 101:11851–11856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei Q, Hebda-Bauer EK, Pletsch A, Luo J, Hoversten MT, Osetek AJ, Evans SJ, Watson SJ, Seasholtz AF, Akil H (2007) Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction. J Neurosci 27:8836–8844

    Article  CAS  PubMed  Google Scholar 

  • Weiss JM, Kilts CD (1998) Animal models of depression and schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) Textbook of psychopharmacology. American Psychiatric Press, Washington, pp 89–131

    Google Scholar 

  • Weiss JM, Bailey WH, Goodman PA, Hoffman LJ, Ambrose MY, Salman S, Charry JM (1982) A model for neurochemical study of depression. In: Spiegelstein MY, Levy A (eds) Behavioral models and the analysis of drug action. Elsevier, Amsterdam, pp 195–223

    Google Scholar 

  • Willne P, Belzung C, Scheel-Kruger J (2014) Resistance to antidepressant drugs: the case for a more predisposition-based and less hippocampocentric research paradigm. Behav Pharmacol 25:352–371

    Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1986) Validating criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10:677–690

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress (CMS) model of depression: a ten-year review and evaluation. Psychopharmacology 134:319–329

    Article  CAS  PubMed  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

  • Willner P (2009) Animal models for psychiatric states. In: Stolerman IP (ed) Encyclopedia of psychopharmacology. Springer, Heidelberg. doi:10.1007/978-3-540-68706-1_336

    Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    Article  CAS  PubMed  Google Scholar 

  • Willner P, Towell A, Sampson D, Muscat R, Sophokleous S (1987) Reduction of sucrose preference by chronic mild stress and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  CAS  PubMed  Google Scholar 

  • Willner P, Scheel-Kruger J, Belzung C (2013) The neuropharmacology of depression and antidepressant treatment. Neurosci Biobehav Rev 37:2331–2371

    Article  CAS  PubMed  Google Scholar 

  • Winter C, Vollmayr B, Djodari-Irani A, Klein J, Sartorius A (2011) Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav Brain Res 216:463–465

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Gross C, Santarelli L, Compan V, Trillat A, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:52–60

    Article  Google Scholar 

  • Zobel A, Maier W (2010) Pharmacogenetics of antidepressive treatment. Eur Arch Psychiatry Clin Neurosci 260:407–417

    Article  PubMed  Google Scholar 

  • Zou YF, Ye DQ, Feng XL, Su H, Pan FM, Liao FF (2010) Meta-analysis of BDNF Val66Met polymorphism association with treatment response in patients with major depressive disorder. Eur Neuropsychopharmacol 20(8):535–544

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Willner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willner, P., Belzung, C. Treatment-resistant depression: are animal models of depression fit for purpose?. Psychopharmacology 232, 3473–3495 (2015). https://doi.org/10.1007/s00213-015-4034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4034-7

Keywords

Navigation