Log in

Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Brain waves reflect collective behavior of neurons and provide insight into distributed network processing. Frontal and hippocampal theta oscillations (4–7 Hz) were linked to cognitive tasks and animal studies have suggested an involvement of glutamatergic neurotransmission in integrative frontal-hippocampal processing. Human evidence for such relationships is lacking.

Methods

Here, we studied the associations between glutamate concentrations in the hippocampal region, measured by a 3-T proton magnetic resonance spectroscopy (1H-MRS), and EEG theta activity during an auditory target detection paradigm.

Results

A robust relationship between hippocampal glutamate and frontal theta activity during stimulus processing was found. Moreover, frontal theta oscillations were related to response speed.

Conclusion

The results suggest a functional coupling between the frontal cortex and hippocampal region during stimulus processing and support the idea of the hippocampus as a neural rhythm generator driven by glutamatergic neurotransmission. These preliminary data show, for the first time, a relationship between in vivo measured glutamate and basic cerebral information processing in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso A, Garcia-Austt E (1987) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials. Exp Brain Res 67:493–501

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6:209–217

    Article  PubMed  CAS  Google Scholar 

  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248

    Article  PubMed  CAS  Google Scholar 

  • Basar-Eroglu C, Basar E, Demiralp T, Schurmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13:161–179

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  CAS  Google Scholar 

  • Dimpfel W, Spuler M (1990) Dizocilpine (MK-801), ketamine and phencyclidine: low doses affect brain field potentials in the freely moving rat in the same way as activation of dopaminergic transmission. Psychopharmacology (Berl) 101:317–323

    Article  CAS  Google Scholar 

  • Ding R, Asada H, Obata K (1998) Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid. Brain Res 800:105–113

    Article  PubMed  CAS  Google Scholar 

  • Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B (2005) Opposing actions of etomidate on cortical theta oscillations are mediated by different gamma-aminobutyric acid type A receptor subtypes. Anesthesiology 102:346–352

    Article  PubMed  CAS  Google Scholar 

  • Elster C, Schubert F, Link A, Walzel M, Seifert F, Rinneberg H (2005) Quantitative magnetic resonance spectroscopy: semi-parametric modeling and determination of uncertainties. Magn Reson Med 53:1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Fell J, Dietl T, Grunwald T, Kurthen M, Klaver P, Trautner P, Schaller C, Elger CE, Fernandez G (2004) Neural bases of cognitive ERPs: more than phase reset. J Cogn Neurosci 16:1595–1604

    Article  PubMed  Google Scholar 

  • Fell J, Kohling R, Grunwald T, Klaver P, Dietl T, Schaller C, Becker A, Elger CE, Fernandez G (2005) Phase-locking characteristics of limbic P3 responses in hippocampal sclerosis. Neuroimage 24:980–989

    Article  PubMed  Google Scholar 

  • Ford JM (1999) Schizophrenia: the broken P300 and beyond. Psychophysiology 36:667–682

    Article  PubMed  CAS  Google Scholar 

  • Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874

    Article  PubMed  Google Scholar 

  • Gallinat J, Strohle A, Lang UE, Bajbouj M, Kalus P, Montag C, Seifert F, Wernicke C, Rommelspacher H, Rinneberg H, Schubert F (2005) Association of human hippocampal neurochemistry, serotonin transporter genetic variation, and anxiety. Neuroimage 26:123–131

    Article  PubMed  Google Scholar 

  • Gasser T, Bacher P, Mocks J (1982) Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 53:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley A, Rissman J, Desposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4:580–599

    PubMed  Google Scholar 

  • Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG map** of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385

    Article  PubMed  CAS  Google Scholar 

  • Givens B (1996) Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. Neuroreport 8:159–163

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  • Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94:229–250

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A, Nystrom B (1984) Extra- and intracellular amino acids in the hippocampus during development of hepatic encephalopathy. Neurochem Res 9:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Herrmann WM, Rohmel J, Streitberg B, Willmann J (1983) Example for applying the COMSTAT multimodal factor analysis algorithm to EEG data to describe variance sources. Neuropsychobiology 10:164–172

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Ritter W, Vaughan HGJ (1995) Cognitive event-related potentials in human and non-human primates: implications for the PCP/NMDA model of schizophrenia. Electroencephalogr Clin Neurophysiol Suppl 44:161–175

    PubMed  CAS  Google Scholar 

  • Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399:781–784

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Siegelbaum SA (2000) Synaptic integration. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. McGraw-Hill, New York, pp 207–228

    Google Scholar 

  • Kirk IJ, Mackay JC (2003) The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks. Cortex 39:993–1008

    Article  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Shen B (2004) Glutamatergic synaptic transmission participates in generating the hippocampal EEG. Hippocampus 14:510–525

    Article  PubMed  CAS  Google Scholar 

  • Maguire EA, Mummery CJ, Buchel C (2000) Patterns of hippocampal-cortical interaction dissociate temporal lobe memory subsystems. Hippocampus 10:475–482

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Mareci TH, Scott KN, Andrew ER (1986) Selective inversion radiofrequency pulses by optimal control. J Magn Reson 70:310–318

    CAS  Google Scholar 

  • Maren S, DeCola JP, Swain RA, Fanselow MS, Thompson RF (1994) Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats. Behav Neurosci 108:44–56

    Article  PubMed  CAS  Google Scholar 

  • Meador KJ, Thompson JL, Loring DW, Murro AM, King DW, Gallagher BB, Lee GP, Smith JR, Flanigin HF (1991) Behavioral state-specific changes in human hippocampal theta activity. Neurology 41:869–872

    PubMed  CAS  Google Scholar 

  • Miller R (1989) Cortico-hippocampal interplay: self organizing phase-locked loops for indexing memory. Psychobiology 17:115–128

    Google Scholar 

  • Mlynarik V, Gruber S, Moser E (2001) Proton T (1) and T (2) relaxation times of human brain metabolites at 3 tesla. NMR Biomed 14:325–331

    Article  PubMed  CAS  Google Scholar 

  • Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27(2):341–356

    Article  PubMed  Google Scholar 

  • Pare D, Collins DR (2000) Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci 20:2701–2710

    PubMed  CAS  Google Scholar 

  • Petroff OA, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging 13:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485

    Article  PubMed  CAS  Google Scholar 

  • Reischies FM, Neuhaus AH, Hansen ML, Mientus S, Mulert C, Gallinat J (2005) Electrophysiological and neuropsychological analysis of a delirious state: the role of the anterior cingulate gyrus. Psychiatry Res 138:171–181

    Article  PubMed  Google Scholar 

  • Röschke J, Fell J (1997) Spectral analysis of P300 generation in depression and schizophrenia. Neuropsychobiology 35:108–114

    Article  PubMed  Google Scholar 

  • Saletu B, Grunberger J, Anderer P, Linzmayer L, Konig P (1995) Acute central effects of the calcium channel blocker and antiglutamatergic drug caroverine. Double-blind, placebo-controlled, EEG map** and psychometric studies after intravenous and oral administration. Arzneimittelforschung 45:217–229

    PubMed  CAS  Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95:7092–7096

    Article  PubMed  CAS  Google Scholar 

  • Savic I, Thomas AM, Ke Y, Curran J, Fried I, Engel JJ (2000) In vivo measurements of glutamine + glutamate (Glx) and N-acetyl aspartate (NAA) levels in human partial epilepsy. Acta Neurol Scand 102:179–188

    Article  PubMed  CAS  Google Scholar 

  • Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 tesla. Neuroimage 21:1762–1771

    Article  PubMed  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsaki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Tesche CD, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci USA 97:919–924

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf CH (1988) Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int Rev Neurobiol 30:225–340

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf CH, Leung LS (1983) Hippocampal rhythmical slow activity: a brief history and effects of entorhinal lesions and phencyclidine. In: Seifert W (ed) The neurobiology of the hippocampus. Academic, London, pp 275–302

    Google Scholar 

  • Vorob’ev VV, Akhmetova ER, Kovalev GI (1997) Participation of N-methyl-D-aspartate receptors in modification of the frequency composition in rat electroencephalogram. Eksp Klin Farmakol 60:11–14

    PubMed  CAS  Google Scholar 

  • Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G (1995) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90

    Article  PubMed  CAS  Google Scholar 

  • Yordanova J, Rosso OA, Kolev V (2003) A transient dominance of theta event-related brain potential component characterizes stimulus processing in an auditory oddball task. Clin Neurophysiol 114:529–540

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the German Federal Ministry of Education and Research (BMBF, Project Berlin Neuroimaging Center, No. 01G00208) is gratefully acknowledged.

Duality of interest

J. Gallinat and D. Kunz contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gallinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallinat, J., Kunz, D., Senkowski, D. et al. Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing. Psychopharmacology 187, 103–111 (2006). https://doi.org/10.1007/s00213-006-0397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0397-0

Keywords

Navigation