Log in

Grothendieck constant is norm of Strassen matrix multiplication tensor

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We show that two important quantities from two disparate areas of complexity theory—Strassen’s exponent of matrix multiplication \(\omega \) and Grothendieck’s constant \(K_G\) — are different measures of size for the same underlying object: the matrix multiplication tensor, i.e., the 3-tensor or bilinear operator \(\mu _{l,m,n} : {\mathbb {F}}^{l \times m} \times {\mathbb {F}}^{m \times n} \rightarrow {\mathbb {F}}^{l \times n}\), \((A,B) \mapsto AB\) defined by matrix-matrix product over \({\mathbb {F}} = {\mathbb {R}}\) or \({\mathbb {C}}\). It is well-known that Strassen’s exponent of matrix multiplication is the greatest lower bound on (the log of) the tensor rank of \(\mu _{l,m,n}\). We will show that Grothendieck’s constant is the least upper bound on a tensor norm of \(\mu _{l,m,n}\), taken over all \(l, m, n \in {\mathbb {N}}\). Aside from relating the two celebrated quantities, this insight allows us to rewrite Grothendieck’s inequality as a norm inequality

$$\begin{aligned} ||\mu _{l,m,n}||_{1,2,\infty } =\max _{X,Y,M\ne 0}\frac{|{{\,\mathrm{tr}\,}}(XMY)|}{||X||_{1,2}||Y||_{2,\infty }||M||_{\infty ,1}}\leqslant K_G. \end{aligned}$$

We prove that Grothendieck’s inequality is unique in the sense that if we generalize the \((1,2,\infty )\)-norm to arbitrary \(p,q, r \in [1, \infty ]\),

$$\begin{aligned} ||\mu _{l,m,n}||_{p,q,r}=\max _{X,Y,M\ne 0}\frac{|{{\,\mathrm{tr}\,}}(XMY)|}{||X||_{p,q}||Y||_{q,r}||M||_{r,p}}, \end{aligned}$$

then \((p,q,r )=(1,2,\infty )\) is, up to cyclic permutations, the only choice for which \(||\mu _{l,m,n}||_{p,q,r}\) is uniformly bounded by a constant independent of lmn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is unavoidable as (pqr)-norms of \(\mu _{l,m,n}\) are invariant under cyclic permutations of pqr. See Lemma 1(i).

  2. To be more precise, by the universal property of tensor products [35, Chapter XVI, §1], \(\beta \) induces a linear map \(\beta _* : {\mathbb {F}}^{l \times m} \otimes {\mathbb {F}}^{m \times n} \rightarrow {\mathbb {F}}^{l \times n}\) and \(\tau \) induces a linear map \(\tau _* : {\mathbb {F}}^{l \times m} \otimes {\mathbb {F}}^{m \times n} \otimes {\mathbb {F}}^{n \times l} \rightarrow {\mathbb {F}}\), i.e., \(\beta _* \in ({\mathbb {F}}^{l \times m})^* \otimes ({\mathbb {F}}^{m \times n})^* \otimes {\mathbb {F}}^{l \times n}\) and \(\tau _* \in ({\mathbb {F}}^{l \times m})^* \otimes ({\mathbb {F}}^{m \times n})^* \otimes ({\mathbb {F}}^{n \times l})^*\). We identify \(\beta , \tau \) with the linear maps \(\beta _*, \tau _*\) they induce.

  3. Note that \(I_{n,n} = I_n\). For consistency, we will always use the latter notation when it is a square matrix.

References

  1. Acín, A., Gisin, N., Toner, B.: Grothendieck’s constant and local models for noisy entangled quantum states. Phys. Rev. A 73(6), 0621055 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Berger, E.: The Grothendieck constant of random and pseudo-random graphs. Discrete Optim. 5(2), 323–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Makarychev, K., Makarychev, Y., Naor, A.: Quadratic forms on graphs. Invent. Math. 163(3), 499–522 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35(4), 787–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On non-approximability for quadratic programs. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 206–215 (2005)

  6. Braverman, M., Makarychev, K., Makarychev, Y., Naor, A.: The Grothendieck constant is strictly smaller than Krivine’s bound. Forum Math. Pi 1, e442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Briët, J., Buhrman, H., Toner, B.: A generalized Grothendieck inequality and nonlocal correlations that require high entanglement. Commun. Math. Phys. 305(3), 827–843 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Briët, J., de Oliveira Filho, F.M., Vallentin, F.: The positive semidefinite Grothendieck problem with rank constraint. In: Automata, languages and programming. Part I, Lecture Notes in Comput. Sci., vol. 6198, pp. 31–42. Springer, Berlin (2010)

    Chapter  Google Scholar 

  9. Briët, J., de Oliveira Filho, F.M., Vallentin, F.: Grothendieck inequalities for semidefinite programs with rank constraint. Theory Comput. 10, 77–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory, vol. 315. Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  11. Charikar, M., Wirth, A.: Maximizing quadratic programs: extending Grothendieck’s inequality. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 54–60 (2004)

  12. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davie, A.M.: Lower bound for \(k_g\). Unpublished note (1984)

  14. Davie, A.M.: Matrix norms related to Grothendieck’s inequality. In: Banach spaces (Columbia, Mo., 1984), Lecture Notes in Math., vol. 1166, pp. 22–26. Springer, Berlin (1985)

    Chapter  Google Scholar 

  15. Diviánszky, P., Bene, E., Vértesi, T.: Qutrit witness from the Grothendieck constant of order four. Phys. Rev., A(96) (2017)

  16. Dwork, C., Nikolov, A., Talwar, K.: Efficient algorithms for privately releasing marginals via convex relaxations. Discrete Comput. Geom. 53(3), 650–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fishburn, P.C., Reeds, J.A.: Bell inequalities, Grothendieck’s constant, and root two. SIAM J. Discrete Math. 7(1), 48–56 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedland, S., Aliabadi, M.: Linear algebra and matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018)

  19. Friedland, S., Lim, L.-H.: Nuclear norm of higher-order tensors. Math. Comp. 87(311), 1255–1281 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedland, S., Lim, L.-H., Zhang, J.: An elementary proof of Grothendieck’s inequalty. Enseign. Math. 64(3/4), 327–351 (2018)

  21. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8, 1–79 (1953)

    MathSciNet  MATH  Google Scholar 

  22. Haagerup, U.: A new upper bound for the complex Grothendieck constant. Israel J. Math. 60(2), 199–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hendrickx, J.M., Olshevsky, A.: Matrix \(p\)-norms are NP-hard to approximate if \(p\ne 1,2,\infty \). SIAM J. Matrix Anal. Appl. 31(5), 2802–2812 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heydari, H.: Quantum correlation and Grothendieck’s constant. J. Phys. A 39(38), 11869–11875 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirsch, F., Quintino, M.T., Vértesi, T., Navascués, M., Brunner, N.: Better local hidden variable models for two-qubit werner states and an upper bound on the Grothendieck constant \(K_G(3)\). Quantum 1, 3 (2017)

    Article  Google Scholar 

  26. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1), 164–189 (1927)

    Article  MATH  Google Scholar 

  27. Horadam, K.J.: Hadamard Matrices and their Applications. Princeton University Press, Princeton (2007)

    Book  MATH  Google Scholar 

  28. Jameson, G.J.O.: Summing and Nuclear Norms in Banach Space Theory, vol. 8. London Mathematical Society Student Texts, Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  29. Khot, S., Naor, A.: Grothendieck-type inequalities in combinatorial optimization. Commun. Pure Appl. Math. 65(7), 992–1035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khot, S., Naor, A.: Sharp kernel clustering algorithms and their associated Grothendieck inequalities. Random Struct. Algorithms 42(3), 269–300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kindler, G., Naor, A., Schechtman, G.: The UGC hardness threshold of the \(L_p\) Grothendieck problem. Math. Oper. Res. 35(2), 267–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klaus, A.-L., Li, C.-K.: Isometries for the vector \((p, q)\) norm and the induced \((p, q)\) norm. Linear Multilinear Algebra 38(4), 315–332 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Krivine, J.-L.: Constantes de Grothendieck et fonctions de type positif sur les sphères. Adv. Math. 31(1), 16–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics, American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  35. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Google Scholar 

  36. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303. ACM, New York (2014)

  37. Lim, L.-H.: Tensors and Hypermatrices. Handbook of Linear Algebra, vol. 211, 2nd edn. CRC Press, Boca Raton (2013)

    Google Scholar 

  38. Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in \(L_{p}\)-spaces and their applications. Studia Math. 29, 275–326 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  39. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Struct. Algorithms 34(3), 368–394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pisier, G.: Factorization of linear operators and geometry of Banach spaces. In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, vol. 60 (1986)

  41. Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. (N.S.) 49(2), 237–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? [extended abstract]. In: STOC’08, pp. 245–254. ACM, New York (2008)

  43. Raghavendra, P., Steurer, D.: Towards computing the Grothendieck constant. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 525–534. SIAM, Philadelphia, PA (2009)

  44. Regev, O.: Bell violations through independent bases games. Quantum Inf. Comput. 12(1–2), 9–20 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Regev, O., Toner, B.: Simulating quantum correlations with finite communication. SIAM J. Comput., 39(4):1562–1580(2009/10)

    Article  MathSciNet  MATH  Google Scholar 

  46. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  47. Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264, 184–202 (1973)

    MathSciNet  MATH  Google Scholar 

  48. Strassen, V.: Rank and optimal computation of generic tensors. Linear Algebra Appl. 52(53), 645–685 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. Strassen, V.: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375(376), 406–443 (1987)

    MathSciNet  MATH  Google Scholar 

  50. Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  51. Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd [extended abstract]. In: STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pp. 887–898. ACM, New York (2012)

  52. Ye, K., Lim, L.-H.: Fast structured matrix computations: tensor rank and Cohn-Umans method. Found. Comput. Math. 18(1), 45–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lek-Heng Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work in this article is supported by DARPA D15AP00109 and NSF IIS 1546413. LHL is supported by a DARPA Director’s Fellowship and the Eckhardt Faculty Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedland, S., Lim, LH. & Zhang, J. Grothendieck constant is norm of Strassen matrix multiplication tensor. Numer. Math. 143, 905–922 (2019). https://doi.org/10.1007/s00211-019-01070-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01070-6

Mathematics Subject Classification

Navigation