Log in

Convergence of Lagrangian mean curvature flow in Kähler–Einstein manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chau, A., Chen J.Y., He, W.Y.: Lagrangian mean curvature flow for entire Lipschitz graphs. ar**v:0902.3300v1

  2. Chen J, He W.Y.: A note on sigular time of mean curvature flow. Math. Z 266(4), 921–931 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen X.X, Li H.: Stability of Kähler-Ricci flow. J. Geom. Anal 20(2), 306–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen X.X., Li H., Wang B.: On the Kähler-Ricci flow with small initial energy. Geom. Funct. Anal. 18-5, 1525–1563 (2008)

    MathSciNet  Google Scholar 

  5. Chen J., Li J.: Mean curvature flow of surfaces in 4-manifolds. Adv. Math. 163, 287–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen J., Li J.: Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math. 156(1), 25–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen B.L., Yin L.: Uniqueness and pseudolocality theorems of the mean curvature flow. Commun. Anal. Geom. 15(3), 435–490 (2007)

    MathSciNet  Google Scholar 

  8. Han X., Li J.: The mean curvature flow approach to the symplectic isotopy problem. Int. Math. Res. Not. 26, 1611–1620 (2005)

    Article  MathSciNet  Google Scholar 

  9. Han X, Li J.: Singularities of symplectic and Lagrangian mean curvature flows. Front. Math. China 4(2), 283–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure. Appl. Math. 27, 715–727 (1974). Corrigendum: Commun. Pure. Appl. Math. 28, 765–766 (1975)

    Google Scholar 

  11. Lee Y.I.: Lagrangian minimal surfaces in Kähler-Einstein surfaces of negative scalar curvature. Commun. Anal. Geom. 2, 579–592 (1994)

    MATH  Google Scholar 

  12. Neves A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. Math. 168(3), 449–484 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neves A.: Singularities of Lagrangian mean curvature flow: monotone case. Math. Res. Lett 17, 109–126 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Oh Y.: Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101(2), 501–519 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oh Y.: Volume minimization of Lagrangian submanifolds under Hamiltonian defromations. Math. Z. 212, 175–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ono H.: Minimal Lagrangian submanifolds in adjoint orbits and upper bounds on the first eigenvalue of the Laplacian. J. Math. Soc. Jpn. 55(1), 243–254 (2003)

    Article  MATH  Google Scholar 

  17. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ar**v:math/0211159

  18. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold. ar**v:dg-ga/9605005v2

  19. Smoczyk K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240, 849–883 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smoczyk K.: Long time existence of the Lagrangian mean curvature flow. Calc. Var. 20, 25–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smoczyk K.: Harnack inequality for the Lagrangian mean curvature flow. Calc. Var. 8, 247–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smoczyk K., Wang M.T.: Mean curvature flows for Lagrangian submanifolds with convex potentials. J. Differ. Geom. 62, 243–257 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(1C2), 243–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomas R.P., Yau S.-T.: Special Lagrangians, stable bundles and mean curvature flow. Commun. Anal. Geom. 10, 1075–1113 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Wang M.T.: Mean curvature flow of surfaces in Einstein four-manifolds. J. Differ. Geom. 57(2), 301–338 (2001)

    MATH  Google Scholar 

  26. Wang, M.T.: A convergence result of the Lagrangian mean curvature flow. In: Proceedings of the Third International Congress of Chinese Mathematicians. AMS/IP Studies in Advanced Mathematics, vol. 42, Part 1 and 2, pp. 291–295. American Mathematical Society, Providence, RI (2008)

  27. Wang, M.T.: Some recent developments in Lagrangian mean curvature flows. In: Surveys in Differential Geometry. Geometric flows, vol. XII, pp. 333–347. International Press, Somerville, MA (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhao Li.

Additional information

H. Li’s research was supported in part by National Science Foundation of China No. 11001080 and a startup funding from University of Science and Technology of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H. Convergence of Lagrangian mean curvature flow in Kähler–Einstein manifolds. Math. Z. 271, 313–342 (2012). https://doi.org/10.1007/s00209-011-0865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0865-z

Keywords

Navigation