Log in

Transverse conformal Killing forms and a Gallot–Meyer theorem for foliations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study transverse conformal Killing forms on foliations and prove a Gallot–Meyer theorem for foliations. Moreover, we show that on a foliation with C-positive normal curvature, if there is a closed basic 1-form \({\phi}\) such that \({\Delta_B\phi=qC\phi}\), then the foliation is transversally isometric to the quotient of a q-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez López J.A.: The basic component of the mean curvature of Riemannian foliations. Ann. Global Anal. Geom. 10, 179–194 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gallot S., Meyer D.: Sur la première valeur propre du p-spectre pour les variétés à operateur de courbure positif. C. R. Acad. Sci. Paris 276, 1619–1621 (1973)

    MATH  MathSciNet  Google Scholar 

  3. Jung S.D.: The first eigenvalue of the transversal Dirac operator. J. Geom. Phys. 39, 253–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jung S.D.: Transversal Twistor Spinors on a Riemannian Foliation, Foliations 2005, pp. 215–228. World Scientific, Singapore (2006)

    Google Scholar 

  5. Jung S.D.: Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form. J. Geom. Phys. 57, 1239–1246 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jung M.J., Jung S.D.: Riemannian foliations admitting transversal conformal fields. Geom. Dedic. 133, 155–168 (2008)

    Article  MATH  Google Scholar 

  7. Kamber, F.W., Tondeur, P.H.: Harmonic foliations. In: Proceedings of National Science Foundation Conference on Harmonic Maps, Tulance, December 1980. Lecture Notes in Mathematics 949, Springer, New York, pp. 87–121 (1982)

  8. Kamber F.W., Tondeur Ph.: Infinitesimal automorphisms and second variation of the energy for harmonic foliations. Tôhoku Math. J. 34, 525–538 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kamber F.W., Tondeur Ph.: De Rham-Hodge theory for Riemannian foliations. Math. Ann. 277, 415–431 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kashiwada T.: On conformal Killing tensor. Nat. Sci. Rep. Ochanomizu Univ. 19, 67–74 (1968)

    MATH  MathSciNet  Google Scholar 

  11. Kashiwada T., Tachibana S.: On the integrability of Killing-Yano’s equation. J. Math. Soc. Japan 21, 259–265 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee J., Richardson K.: Lichnerowicz and Obata theorems for foliations. Pacific J. Math. 206, 339–357 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. March P., Min-Oo M., Ruh E.A.: Mean curvature of Riemannian foliations. Can. Math. Bull. 39, 95–105 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mason A.: An application of stochastic flows to Riemannian foliations. Am. J. Math. 26, 481–515 (2000)

    MATH  Google Scholar 

  15. Meyer D.: Sur les variétés riemanniennes à operateur de courbure positif. C. R. Acad. Sci. Paris 272, 482–485 (1971)

    MATH  Google Scholar 

  16. Min-Oo, M., Ruh, E.A., Tondeur, Ph.: Transversal Curvature and Tautness for Riemannian Foliations. Lecture Notes in Mathematics 1481, Springer, Berlin, pp. 145–146 (1991)

  17. Min-Oo M., Ruh E.A., Tondeur Ph.: Vanishing theorems for the basic cohomology of Riemannian foliations. J. reine angew. Math. 415, 167–174 (1991)

    MATH  MathSciNet  Google Scholar 

  18. Moroianu A., Semmelmann U.: Twistor forms on Kähler manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. II: II, 823–845 (2003)

    MathSciNet  Google Scholar 

  19. O’Neill B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459–469 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pak J.S., Yorozu S.: Transverse fields on foliated Riemannian manifolds. J. Korean Math. Soc. 25, 83–92 (1988)

    MATH  MathSciNet  Google Scholar 

  21. Park E., Richardson K.: The basic Laplacian of a Riemannian foliation. Am. J. Math. 118, 1249–1275 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Semmelmann U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503–527 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tachibana S.: On conformal Killing tensor in a Riemannian space. Tôhoku Math. J. 21, 56–64 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tachibana S.: On Killing tensors in Riemannian manifolds of positive curvature operator. Tôhoku Math. J. 28, 177–184 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tondeur Ph.: Foliations on Riemannian manifolds. Springer, New York (1988)

    Book  MATH  Google Scholar 

  26. Tondeur Ph.: Geometry of foliations. Birkhäuser-Verlag, Basel, Boston, Berlin (1997)

    Book  MATH  Google Scholar 

  27. Yano K.: Some remarks on tensor fields and curvature. Ann. Math. 55, 328–347 (1952)

    Article  MATH  Google Scholar 

  28. Yorozu S., Tanemura T.: Green’s theorem on a foliated Riemannian manifold and its applications. Acta Math. Hungar. 56, 239–245 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Dal Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S.D., Richardson, K. Transverse conformal Killing forms and a Gallot–Meyer theorem for foliations. Math. Z. 270, 337–350 (2012). https://doi.org/10.1007/s00209-010-0800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0800-8

Keywords

Mathematics Subject Classification (2000)

Navigation