Log in

Plurisubharmonic functions in calibrated geometry and q-convexity

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let (M, ω) be a Kähler manifold. An integrable function \({\varphi}\) on M is called ω q-plurisubharmonic if the current \({dd^c\varphi\wedge \omega^{q-1}}\) is positive. We prove that \({\varphi}\) is ω q-plurisubharmonic if and only if \({\varphi}\) is subharmonic on all q-dimensional complex subvarieties. We prove that a ω q-plurisubharmonic function is q-convex, and admits a local approximation by smooth, ω q-plurisubharmonic functions. For any closed subvariety \({Z\subset M}\) , \({\dim_\mathbb{C} Z\leq q-1}\) , there exists a strictly ω q-plurisubharmonic function in a neighbourhood of Z (this result is known for q-convex functions). This theorem is used to give a new proof of Sibony’s lemma on integrability of positive closed (p, p)-forms which are integrable outside of a complex subvariety of codimension ≥  p + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlet D.: Convexité de l’espace des cycles. Bull. Soc. Math. France 106, 373–397 (1978)

    MATH  MathSciNet  Google Scholar 

  2. Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac operators. Grundlehren Text Editions. Springer, Berlin (1992)

    Google Scholar 

  3. Błocki Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier 55, 1735–1756 (2005)

    MATH  Google Scholar 

  4. Colţoiu M.: Complete locally pluripolar sets. J. Reine Angew. Math. 412, 108–112 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Demailly, J.-P.: Estimations L 2 pour l’opérateur \({\bar\partial}\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. Ecole Norm. Sup. 4e Sér. 15 (1982) 457–511

  6. Demailly J.-P.: Cohomology of q-convex spaces in top degrees. Math. Z. 204(2), 283–295 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demailly, J.-P.: L 2 vanishing theorems for positive line bundles and adjunction theory, Lecture Notes of a CIME course on “Transcendental Methods of Algebraic Geometry” (Cetraro, Italy, July 1994), ar**v:alg-geom/9410022, and also Lecture Notes in Mathematics, vol. 1646, pp. 1–97, Springer, Berlin (1996)

  8. Diederich K., Fornæss J.E.: Smoothing q-convex functions and vanishing theorems. Invent. Math. 82(2), 291–305 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greene R.E., Wu H.: C -approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Scient. Ec. Norm. Sup. 12, 47–84 (1979)

    MATH  MathSciNet  Google Scholar 

  10. Harvey F.R.: Spinors and calibrations. Perspectives in Mathematics vol. 9. Academic Press, Boston (1990)

    Google Scholar 

  11. Harvey R., Lawson B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harvey, R., Lawson, B.: An Introduction to Potential Theory in Calibrated Geometry. ar**v:0710.3920, p. 45

  13. Harvey, R., Lawson, B.: Duality of Positive Currents and Plurisubharmonic Functions in Calibrated Geometry. ar**v:0710.3921, p. 29

  14. Hein G.: Computing Green currents via the heat kernel. J. Reine Angew. Math. 540, 87–104 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Joyce, D.D.: Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, vol. 12. Oxford University Press, Oxford

  16. Khusanov, Z.Kh.: (1988) Maximal q-subharmonic functions (Russian). Dokl. Akad. Nauk UzSSR (4), 9–10 (1988)

  17. Khusanov, Z.Kh.: Capacity properties of q-subharmonic functions. I, (Russian) Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk (1), 41–45, 97 (1990)

  18. Khusanov, Z.Kh.: (1990) Capacity properties of q-subharmonic functions. II (Russian). Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk (5) 28–33, 94 (1990)

  19. Terence N., Mohan R.: The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds. Ann. Inst. Fourier 47(5), 1345–1365 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Ohsawa, T.: A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds. Invent. Math. 63, 335–354 (1981); 66, 391–393 (1982)

    Google Scholar 

  21. Peternell M.: Continuous q-convex exhaustion functions. Invent. Math. 85(2), 249–262 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sibony N.: Quelques problemes de prolongement de courants en analyse complexe. Duke Math. J. 52, 157–197 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. Verbitsky, M.: Hyperholomorpic connections on coherent sheaves and stability. 40 p. math.AG/0107182

  24. Verbitsky, M.: Manifolds with parallel differential forms and Kähler identities for G 2-manifolds. ar**v:math/0502540, p. 34

  25. Verbitsky, M.: Positive Forms on Hyperkahler Manifolds, ar**v:0801.1899, p. 33

  26. Wu, H.: On certain Kähler manifolds which are q-complete. Complex Analysis of Several Variables. In: Proceedings of Symposia in Pure Mathematics, vol. 41, pp. 253–276. American Mathematical Society, Providence (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Verbitsky.

Additional information

Misha Verbitsky is supported by CRDF grant RM1-2354-MO02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbitsky, M. Plurisubharmonic functions in calibrated geometry and q-convexity. Math. Z. 264, 939–957 (2010). https://doi.org/10.1007/s00209-009-0498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0498-7

Keywords

Navigation