Log in

Topological polylogarithms and p-adic interpolation of L-values of totally real fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We develop the topological polylogarithm which provides an integral version of Nori’s Eisenstein cohomology classes for \({{\mathrm{GL}}}_n(\mathbb {Z})\) and yields classes with values in an Iwasawa algebra. This implies directly the integrality properties of special values of L-functions of totally real fields and a construction of the associated p-adic L-function. Using a result of Graf, we also apply this to prove some integrality and p-adic interpolation results for the Eisenstein cohomology of Hilbert modular varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barsky, D.: Fonctions zeta \(p\)-adiques d’une classe de rayon des corps de nombres totalement réels. In: Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math., Paris, Exp. No. 16, p. 23 (1978)

  2. Beĭlinson, A.A., Levin, A.: The elliptic polylogarithm. In: Motives (Seattle, WA, 1991). Proceedings of Symposia in Pure Mathematics, vol. 55, pp. 123–190. American Mathematical Society, Providence (1994)

  3. Blottière, D.: Réalisation de Hodge du polylogarithme d’un schéma abélien. J. Inst. Math. Jussieu 8(1), 1–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charollois, P., Dasgupta, S.: Integral Eisenstein cocycles on \({\bf GL}_n\), I: Sczech’s cocycle and \(p\)-adic \(L\)-functions of totally real fields. Camb. J. Math. 2(1), 49–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta \(p\)-adiques. Invent. Math. 51(1), 29–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P., Ribet, K.A.: Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math. 59(3), 227–286 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graf, P.: Polylogarithms for \({G}l_2\) over totally real fields. Thesis Universität Regensburg (2016). ar**v:1604.04209

  8. Hill, R.: Shintani cocycles on \({\rm GL}_n\). Bull. Lond. Math. Soc. 39(6), 993–1004 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kings, G.: Degeneration of polylogarithms and special values of \(L\)-functions for totally real fields. Doc. Math. 13, 131–159 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Kings, G.: Eisenstein classes, elliptic Soulé elements and the \(\ell \)-adic elliptic polylogarithm. In: The Bloch–Kato Conjecture for the Riemann Zeta Function. London Mathematical Society Lecture Note Series, vol. 418, pp. 237–296. Cambridge University Press, Cambridge (2015)

  11. Kings, G., Loeffler, D., Zerbes, S.L.: Rankin–Eisenstein classes and explicit reciprocity laws. Camb. J. Math. 5(1), 1–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer, Berlin (1990). With a chapter in French by Christian Houzel

  13. Nori, M.V.: Some Eisenstein cohomology classes for the integral unimodular group. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 690–696. Birkhäuser, Basel (1995)

  14. Sczech, R.: Eisenstein group cocycles for \({\rm GL}_n\) and values of \(L\)-functions. Invent. Math. 113(3), 581–616 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck: Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, vol. 288. Springer, Berlin (1972). Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656 (50 #7134)

  16. Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II 1970, 15–56 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Siegel, C.L.: Advanced Analytic Number Theory, 2nd edn. Tata Institute of Fundamental Research Studies in Mathematics, vol. 9. Tata Institute of Fundamental Research, Bombay (1980)

  18. Spiess, M.: Shintani cocycles and the order of vanishing of \(p\)-adic Hecke \(L\)-series at \(s=0\). Math. Ann. 359(1–2), 239–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Steele, G.A.: The \(p\)-adic Shintani cocycle. Math. Res. Lett. 21(2), 403–422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Beilinson would like to thank M. Nori for the introduction to his Eisenstein cohomology classes back in 1992. G. Kings would like to thank the University of Chicago for a very profitable stay in 2002. He also would like to thank M. Nori for discussions at that time about the possibility to construct Harder’s Eisenstein classes for Hilbert modular varieties with Nori’s \({{\mathrm{GL}}}_n(\mathbb {Z})\) cohomology classes. The authors would also like to thank the referee for very useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kings.

Additional information

Communicated by Vasudevan Srinivas.

The authors research was partially supported by the following grants: NSF Grant DMS-1406734 (A.B.), DFG Grant SFB 1085 Higher invariants (G.K.), Simons-IUM Fellowship, Laboratory of Mirror Symmetry NRUHSE, RF Government grant, Ag. No. 14.641.31.0001 (A.L.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beilinson, A., Kings, G. & Levin, A. Topological polylogarithms and p-adic interpolation of L-values of totally real fields. Math. Ann. 371, 1449–1495 (2018). https://doi.org/10.1007/s00208-018-1645-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1645-4

Navigation