Log in

Estimate and monotonicity of the first eigenvalue under the Ricci flow

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we first derive a monotonicity formula for the first eigenvalue of \({-\Delta +aR (0 < a \leq 1/2)}\) on a closed surface with nonnegative scalar curvature under the (unnormalized) Ricci flow. We then derive a general evolution formula for the first eigenvalue under the normalized Ricci flow. As an application, we obtain various monotonicity formulae and estimates for the first eigenvalue on closed surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger M., Gauduchon P., Mazet E.: Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    Google Scholar 

  2. Cao X.: Eigenvalues of \({(-\Delta + \frac R2)}\) on manifolds with nonnegative curvature operator. Math. Ann. 337(2), 435–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136(11), 4075–4078 (2008)

    Article  MATH  Google Scholar 

  4. Chang S.-C., Lu P.: Evolution of Yamabe constant under Ricci flow. Ann. Glob. Anal. Geom. 31(2), 147–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chavel I.: Eigenvalues in Riemannian geometry, Volume 115 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1984)

    Google Scholar 

  6. Chow B.: The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    MATH  Google Scholar 

  7. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I, volume 135 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. Geometric aspects (2007)

  8. Chow B., Knopf D.: The Ricci flow: An Introduction, volume 110 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  9. El Soufi A., Ilias S.: Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(1), 89–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Hamilton, R.S.: The Ricci flow on surfaces. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), volume 71 of Contemporary Mathematics, pp. 237–262. American Mathematical Society, Providence, RI (1988)

  12. Kleiner B., Lott J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kokotov A., Korotkin D.: Normalized Ricci flow on Riemann surfaces and determinant of Laplacian. Lett. Math. Phys. 71(3), 241–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li J.-F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338(4), 927–946 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J.-F.: Monotonicity formulas under rescaled ricci flow. ar**v:0710.5328v3 (2007)

  16. Ling, J.: A class of monotonic quantities along the Ricci flow. ar**v:0710.4291v2 (2007)

  17. Ling, J.: A comparison theorem and a sharp bound via the Ricci flow. ar**v:0710.2574v1 (2007)

  18. Ma L.: Eigenvalue monotonicity for the Ricci-Hamilton flow. Ann. Glob. Anal. Geom. 29(3), 287–292 (2006)

    Article  MATH  Google Scholar 

  19. Oliynyk T., Suneeta V., Woolgar E.: Irreversibility of world-sheet renormalization group flow. Phys. Lett. B 610(1-2), 115–121 (2005)

    Article  MathSciNet  Google Scholar 

  20. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ar**v.org:math/0211159 (2002)

  21. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. (Preprint). ar**v.org:math/0307245 (2003)

  22. Perelman, Grisha.: Ricci flow with surgery on three-manifolds. (Preprint). ar**v.org:math/0303109 (2003)

  23. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    MATH  Google Scholar 

  24. Schoen, R., Yau, S.-T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aodong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Hou, S. & Ling, J. Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354, 451–463 (2012). https://doi.org/10.1007/s00208-011-0740-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0740-6

Mathematics Subject Classification (2000)

Navigation