Log in

Hardy spaces for non-compactly causal symmetric spaces and the most continuous spectrum

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

Let G/H be a semisimple symmetric space. Then the space L 2(G/H) can be decomposed into a finite sum of series of representations induced from parabolic subgroups of G. The most continuous part of the spectrum of L 2(G/H) is the part induced from the smallest possible parabolic subgroup. In this paper we introduce Hardy spaces canonically related to this part of the spectrum for a class of non-compactly causal symmetric spaces. The Hardy space is a reproducing Hilbert space of holomorphic functions on a bounded symmetric domain of tube type, containing G/H as a boundary component. A boundary value map is constructed and we show that it induces a G-isomorphism onto a multiplicity free subspace of full spectrum in the most continuous part L mc 2(G/H) of L 2(G/H). We also relate our Hardy space to the classical Hardy space on the bounded symmetric domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, D.N., Gindikin, S.G.: On Stein extensions of real symmetric spaces. Math. Ann. 286, 1–12 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. van den Ban, E., Schlichtkrull, H.: The most continuous part of the Plancherel decomposition for a reductive symmetric space. Ann. Math. 145(2), 267–364 (1997)

    Google Scholar 

  3. van den Ban, E., Schlichtkrull, H.: The Plancherel decomposition for a reductive symmetric space I. The spherical part, preprint 2001

  4. van den Ban, E., Schlichtkrull, H.: The Plancherel decomposition for a reductive symmetric space II. Representation theory, preprint 2001

  5. Bertram, W.: On some causal and conformal groups. J. Lie Theory 6, 215–247 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Betten, F.: Causal compactification of compactly causal spaces, TAMS, to appear

  7. Betten, F., Ólafsson, G.: Causal compactification and Hardy spaces for spaces of Hermitian type. Pacific J. Math. 200, 273–312 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davidson, M., Ólafsson, G., Zhang, G.: Segal-Bargmann transform on Hermitian symmetric spaces and orthogonal polynomials, preprint 2001

  9. Delorme, P.: Formule de Plancherel pour les espaces symétriques réductifs. Ann. Math. 147, 417–452 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. In: Representation theory of reductive groups (Park City, Utah, 1982). pp. 97–143. Progr. Math. 40, Birkhäuser Boston, Boston, MA, 1983

  11. Faraut, J., Thomas, E.G.F.: Invariant Hilbert spaces of holomorphic functions. J. Lie Theory 9, 383–402 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Gel’fand, M., Gindikin, S.G.: Complex Manifolds whose Skeletons are real Lie Groups, and Analytic Discrete Series of Representations. Funct. Anal. Appl. 11, 19–27 (1977)

    Google Scholar 

  13. Gindikin, S.: Tube domains in Stein symmetric spaces. Positivity in Lie theory. In: Open problems. pp. 81–97. de Gruyter Exp. Math. 26, de Gruyter, Berlin, 1998

  14. Gindikin, S., Krötz, B.: Complex crowns of Riemannian symmetric spaces and non-compactly causal symmetric spaces. Trans. Amer. Math. Soc. 354, 3299–3327 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gindikin, S., Krötz, B.: Invariant Stein domains in Stein symmetric spaces and a non-linear complex convexity theorem. IMRN 18, 959–971 (2002)

    Article  MathSciNet  Google Scholar 

  16. Gindikin, S., Matsuki, T.: Stein Extensions of Riemann Symmetric Spaces and Dualities of Orbits on Flag Manifolds. Transformation groups, to appear

  17. Groenevelt, W., Koelnik, E.: Meixner functions and polynomials related to Lie algebra representations, preprint

  18. Hilgert, J., Ólafsson, G.: Causal Symmetric Spaces, Geometry and Harmonic Analysis. Acad. Press, 1996

  19. Hilgert, J., ’Olafsson, G., Ørsted, B.: Hardy spaces on affine symmetric spaces. J. Reine Angew. Math. 415, 189–218 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Krötz, B.: The Plancherel theorem for biinvariant Hilbert spaces. Publ. Res. Inst. Math. Sci. 35, 91–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krötz, B.: Formal dimension for semisimple symmetric spaces. Compositio Math. 125, 155–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Krötz, B., Neeb, K.-H.: Unitary spherical highest weight representations. Trans. Amer. Math. Soc. 354, 1233–1264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krötz, B., Neeb, K.-H., Ólafsson, G.: Spherical representations and mixed symmetric spaces. Representation Theory 1, 424–461 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krötz, B., Ólafsson, G.: The c-function for a non-compactly causal symmetric space. Invent. math. 149, 647–659 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Krötz, B., Stanton, R.J.: Holomorphic extension of representations: (I) automorphic functions. Annals of Mathematics, to appear

  26. Krötz, B., Stanton, R.J.: Holomorphic extension of representations: (II) geometry and harmonic analysis, preprint

  27. Neeb, K.-H.: Holomorphy and Convexity in Lie Theory, Expositions in Mathematics. de Gruyter 28, (1999)

  28. Neretin, Y.A.: Matrix analogs of the B-function and Plancherel formula for Berezin Kernel representation. Math. Sb. 191, 57–100 (2000); Translation in Sb. Math. 191, 683–715 (2000)

    Article  MathSciNet  Google Scholar 

  29. Ólafsson, G.: Analytic continuation in representation theory and harmonic analysis. In: Global analysis and harmonic analysis (Marseille-Luminy, 1999), pp. 201–233. Sémin. Congr. 4, Soc. Math. France, Paris, 2000

  30. Ólafsson, G., Ørsted, B.: The holomorphic discrete series for affine symmetric spaces. I. J. Funct. Anal. 81, 126–159 (1988)

    Article  MATH  Google Scholar 

  31. Ólafsson, G., Ørsted, B.: Generalizations of the Bargmann transform. Lie theory and its applications in physics (Clausthal, 1995) (H.-D. Doebner, V.K. Dobrev, and J. Hilgert eds.) World Scientific, River Edge, New Jersey, 1996

  32. Ólafsson, G., Ørsted, B.: Causal compactification and Hardy spaces. Trans. Amer. Math. Soc. 351, 3771–3792 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Olshanski, G.I.: Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series. Funct. Anal. and Appl. 15, 275–285 (1982)

    Article  Google Scholar 

  34. Stanton, R. J.: Analytic Extension of the holomorphic discrete series. Amer. J. Math. 108, 1411–1424 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wallach, N.: The analytic continuation of the discrete series. I, II. Trans. Amer. Math. Soc. 251, 1–17, 19–37 (1979)

    MATH  MathSciNet  Google Scholar 

  36. Zhang, G.: Berezin transform on real bounded symmetric domains. Trans. Amer. Math. Soc. 353, 3769–3787 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gindikin.

Additional information

Supported in part by NSF-grant DMS-0070816 and the MSRI

Supported in part by NSF-grant DMS-0097314 and the MSRI

Supported in part by NSF-grant DMS-0070607 and the MSRI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gindikin, S., Krötz, B. & Ólafsson, G. Hardy spaces for non-compactly causal symmetric spaces and the most continuous spectrum. Math. Ann. 327, 25–66 (2003). https://doi.org/10.1007/s00208-003-0409-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-003-0409-x

Keywords

Navigation