Log in

A Regularity Criterion for the Navier–Stokes Equation Involving Only the Middle Eigenvalue of the Strain Tensor

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

An Addendum to this article was published on 19 May 2020

Abstract

This manuscript derives an evolution equation for the symmetric part of the gradient of the velocity (the strain tensor) in the incompressible Navier–Stokes equation on \({\mathbb {R}}^3\), and proves the existence of \(L^2\) mild solutions to this equation. We use this equation to obtain a simplified identity for the growth of enstrophy for mild solutions that depends only on the strain tensor, not on the nonlocal interaction of the strain tensor with the vorticity. The resulting identity allows us to prove a new family of scale-critical, necessary and sufficient conditions for the blow-up of a solution at some finite time \(T_{max}<+\infty \), which depend only on the history of the positive part of the second eigenvalue of the strain matrix. Since this matrix is trace-free, this severely restricts the geometry of any finite-time blow-up. This regularity criterion provides analytic evidence of the numerically observed tendency of the vorticity to align with the eigenvector corresponding to the middle eigenvalue of the strain matrix. This regularity criterion also allows us to prove as a corollary a new scale critical, one component type, regularity criterion for a range of exponents for which there were previously no known critical, one component type regularity criteria. Furthermore, our analysis permits us to extend the known time of existence of smooth solutions with fixed initial enstrophy \(E_0=\frac{1}{2}\left\| \nabla \otimes u^0\right\| _{L^2}^2\) by a factor of 4920.75—although the previous constant in the literature was not expected to be close to optimal, so this improvement is less drastic than it sounds, especially compared with numerical results. Finally, we will prove the existence and stability of blow-up for a toy model ODE for the strain equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albritton, D.: Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces. Anal. PDE11(6), 1415–1456, 2018

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayala, D., Protas, B.: Extreme vortex states and the growth of enstrophy in three-dimensional incompressible flows. J. Fluid Mech. 818, 772–806, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys. 94(1), 61–66, 1984

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202(3), 919–932, 2011

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D.: On the spectral dynamics of the deformation tensor and new a priori estimates for the 3D Euler equations. Commun. Math. Phys. 263(3), 789–801, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chae, D., Choe, H.-J.: Regularity of solutions to the Navier–Stokes equation. Electron. J. Differ. Equ. 5, 7, 1999

    MathSciNet  MATH  Google Scholar 

  7. Chemin, J.-Y.: Remarques sur l’existence globale pour le système de Navier–Stokes incompressible. SIAM J. Math. Anal. 23(1), 20–28, 1992

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-D Navier–Stokes systems. Ann. Sci. Éc. Norm. Supér. (4)49(1), 131–167, 2016

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier–Stokes system: general case. Arch. Ration. Mech. Anal. 224(3), 871–905, 2017

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Q., Zhang, Z.: Space–time estimates in the Besov spaces and the Navier–Stokes equations. Methods Appl. Anal. 13(1), 107–122, 2006

    MathSciNet  MATH  Google Scholar 

  11. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS)11(5), 1105–1139, 2009

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P.: Note on loss of regularity for solutions of the \(3\)-D incompressible Euler and related equations. Commun. Math. Phys. 104(2), 311–326, 1986

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Escauriaza, L., Seregin , G.A., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk58(2(350)), 3–44, 2003

    Article  MathSciNet  Google Scholar 

  14. Fefferman, C.L.: Existence and smoothness of the Navier–Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Mathematics Institute, Cambridge, MA, 2006

  15. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315, 1964

    Article  MathSciNet  MATH  Google Scholar 

  16. Galanti , B., Gibbon , J.D., Heritage , M.: Vorticity alignment results for the three-dimensional Euler and Navier–Stokes equations. Nonlinearity10(6), 1675–1694, 1997

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gallagher, I., Koch, G.S., Planchon, F.: A profile decomposition approach to the \(L^\infty _t(L^3_x)\) Navier–Stokes regularity criterion. Math. Ann. 355(4), 1527–1559, 2013

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallagher, I., Koch, G.S., Planchon, F.: Blow-up of critical Besov norms at a potential Navier–Stokes singularity. Commun. Math. Phys. 343(1), 39–82, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hamlington, P.E., Schumacher, J., Dahm, W.J.A.: Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. Phys. Rev. E (3)77(2), 026303, 8, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \({ R}^{m}\), with applications to weak solutions. Math. Z. 187(4), 471–480, 1984

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907, 1988

    Article  MathSciNet  MATH  Google Scholar 

  22. Khai, D.Q., Tri, N.M.: On the initial value problem for the Navier–Stokes equations with the initial datum in critical Sobolev and Besov spaces. J. Math. Sci. Univ. Tokyo23(2), 499–528, 2016

    MathSciNet  MATH  Google Scholar 

  23. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242(2), 251–278, 2002

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozono, H., Taniuchi, Y.: Bilinear estimates and critical Sobolev inequality in BMO, with applications to the Navier–Stokes and the Euler equations. Sūrikaisekikenkyūsho Kōkyūroku1146, 39–52, 2000. (Mathematical analysis of liquids and gases (Japanese) (Kyoto, 1999))

    MathSciNet  MATH  Google Scholar 

  25. Kukavica, I., Ziane, M.: Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48(6), 065203, 10, 2007

    Article  MathSciNet  MATH  Google Scholar 

  26. Ladyzhenskaya, O.A.: Uniqueness and smoothness of generalized solutions of Navier–Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)5, 169–185, 1967

    MathSciNet  MATH  Google Scholar 

  27. Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca Raton 2016

    Book  MATH  Google Scholar 

  28. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248, 1934

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, L., Doering, C.R.: Limits on enstrophy growth for solutions of the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2693–2727, 2008

    Article  MathSciNet  MATH  Google Scholar 

  30. Phuc, N.C.: The Navier–Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17(4), 741–760, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Math. Pura Appl. 4(48), 173–182, 1959

    Article  MATH  Google Scholar 

  32. Schumacher, J., Eckhardt, B., Doering, C.R.: Extreme vorticity growth in Navier–Stokes turbulence. Phys. Let. A374(6), 861–865, 2010

    Article  ADS  MATH  Google Scholar 

  33. Seregin, G., Šverák, V.: Navier–Stokes equations with lower bounds on the pressure. Arch. Ration. Mech. Anal. 163(1), 65–86, 2002

    Article  MathSciNet  MATH  Google Scholar 

  34. Seregin, G.: A note on necessary conditions for blow-up of energy solutions to the Navier-Stokes equations. In: Parabolic Problems, volume 80 of Progress in Nonlinear Differential Equations and Applications, pp. 631–645. Birkhäuser/Springer Basel AG, Basel, 2011

    Chapter  Google Scholar 

  35. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195, 1962

    Article  MathSciNet  MATH  Google Scholar 

  36. Struwe, M.: On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9(2), 235–242, 2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pura Appl. 4(110), 353–372, 1976

    Article  MathSciNet  MATH  Google Scholar 

  38. Tran, C.V., **nwei, Y.: Pressure moderation and effective pressure in Navier–Stokes flows. Nonlinearity29(10), 2990–3005, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Tsinober, A.: Is concentrated vorticity that important. Eur. J. Mech. B Fluids17(4), 421–449, 1998

    Article  ADS  MATH  Google Scholar 

  40. Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component. J. Math. Phys. 50(12), 123514, 11, 2009

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ontario Trillium Scholarship, the Coxeter Graduate Scholarship, the University of Toronto Department of Mathematics, and the CUPE local 3902 and CUPE national strike funds. I would like to thank my adviser, Prof. Robert McCann, for his support and advice throughout this work. I would also like to thank the anonymous referee for their extremely thorough and helpful report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Miller.

Additional information

Communicated by V. Šverák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, E. A Regularity Criterion for the Navier–Stokes Equation Involving Only the Middle Eigenvalue of the Strain Tensor. Arch Rational Mech Anal 235, 99–139 (2020). https://doi.org/10.1007/s00205-019-01419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01419-z

Navigation