Log in

Sharp Interface Limit for a Stokes/Allen–Cahn System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the sharp interface limit of a coupled Stokes/Allen–Cahn system, when a parameter \({\epsilon > 0}\) that is proportional to the thickness of the diffuse interface tends to zero, in a two dimensional bounded domain. For sufficiently small times we prove convergence of the solutions of the Stokes/Allen–Cahn system to solutions of a sharp interface model, where the interface evolution is given by the mean curvature equation with an additional convection term coupled to a two-phase Stokes system with an additional contribution to the stress tensor, which describes the capillary stress. To this end we construct a suitable approximation of the solution of the Stokes/Allen–Cahn system, using three levels of the terms in the formally matched asymptotic calculations, and estimate the difference with the aid of a suitable refinement of a spectral estimate of the linearized Allen–Cahn operator. Moreover, a careful treatment of the coupling terms is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: On generalized solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Bound. 9, 31–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H.: On the notion of generalized solutions of two-phase flows for viscous incompressible fluids. RIMS Kôkyûroku Bessatsu B1, 1–15 (2007)

    MATH  Google Scholar 

  3. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Rat. Mech. Anal. 194(2), 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci., 22(3), 1150013 (40 pages), 2012

  5. Abels, H.; Lengeler, D.: On sharp interface limits for diffuse interface models for two-phase flows. Interfaces Free Bound. 16(3), 395–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abels, H., Moser, M.: Well-posedness of a Navier-Stokes/mean curvature flow system. Preprint ar**v:1705.10832, Accepted for publication in Contemporary Mathematics, 2017

  7. Abels, H.; Röger, M.: Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2403–2424 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Abels, H., Schaubeck, S.: Nonconvergence of the capillary stress functional for solutions of the convective cahn-hilliard equation. In: Mathematical Fluid Dynamics, Present and Future, Springer Proceedings in Mathematics & Statistics. 2016

  9. Abels, H.; Wilke, M.: Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes-Mullins-Sekerka system. Interfaces Free Bound. 15(1), 39–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alikakos, N.D.; Bates, P.W.; Chen, X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arendt, W.; Chill, R.; Fornaro, S.; Poupaud, C.: \(L^p\)-maximal regularity for non-autonomous evolution equations. J. Differ. Equ. 237(1), 1–26 (2007)

    Article  ADS  MATH  Google Scholar 

  12. Blesgen, T.: A generalization of the Navier–Stokes equations to two-phase flows. J. Phys. D (Appl. Phys.), 32, 1119–1123, 1999

  13. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Caginalp, G.; Chen, X.: Convergence of the phase field model to its sharp interface limits. Euro. J. Appl. Math. 9, 417–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carlen, E.A., Carvalho, M.C., Orlandi, E.: A simple proof of stability of fronts for the Cahn-Hilliard equation. Commun. Math. Phys., 224(1), 323–340, 2001 Dedicated to Joel L. Lebowitz.

  16. Chen, X.: Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19(7–8), 1371–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X.; Hilhorst, D.; Logak, E.: Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12(4), 527–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Mottoni, P.; Schatzman, M.: Geometrical evolution of devoloped interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)

    Article  MATH  Google Scholar 

  19. Denisova, I.V., Solonnikov, V.A.: Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 188(Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 22):5–44, 186, 1991

  20. Dore, G.; Venni, A.: On the closedness of the sum of two closed operators. Math. Z 196, 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Escher, J.; Seiler, J.: Bounded \(H_\infty \)-calculus for pseudodifferential operators and applications to the Dirichlet-Neumann operator. Trans. Am. Math. Soc. 360(8), 3945–3973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fei, M.; Wang, W.; Zhang, P.; Zhang, Z.: Dynamics of the nematic-isotropic sharp interface for the liquid crystal. SIAM J. Appl. Math. 75(4), 1700–1724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gal, C.G.; Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 401–436 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gal, C.G.; Grasselli, M.: Trajectory attractors for binary fluid mixtures in 3d. Chin. Ann. Math. ser. B 31, 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. 1. Springer, Berlin (1994)

    MATH  Google Scholar 

  26. Giga, Y.; Novotny, A. (eds.): Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Berlin (2018)

    MATH  Google Scholar 

  27. Hoffmann, K.-H.; Starovoitov, V.N.: Phase transitions of liquid-liquid type with convection. Adv. Math. Sci. Appl. 8(1), 185–198 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Hoffmann, K.-H.; Starovoitov, V.N.: The Stefan problem with surface tension and convection in Stokes fluid. Adv. Math. Sci. Appl. 8(1), 173–183 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Kalton, N.J.; Weis, L.: The \(H^\infty \)-calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Köhne, M.; Prüss, J.; Wilke, M.: Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension. Math. Ann. 356(2), 737–792 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C.; Sato, N.; Tonegawa, Y.: Two-phase flow problem coupled with mean curvature flow. Interfaces Free Bound. 14(2), 185–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, C.; Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lowengrub, J.; Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nouri, A.; Poupaud, F.: An existence theorem for the multifluid Navier-Stokes problem. J. Differ. Equ. 122, 71–88 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Plotnikov, P.: Generalized solutions to a free boundary problem of motion of a non-Newtonian fluid. Sib. Math. J. 34(4), 704–716 (1993)

    Article  MATH  Google Scholar 

  36. Prüss, J.; Shibata, Y.; Shimizu, S.; Simonett, G.: On well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Equ. Control Theory 1(1), 171–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Prüss, J.; Simonett, G.: On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 12(3), 311–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schaubeck, S.: Sharp interface limits for diffuse interface models. PhD thesis, University Regensburg, urn:nbn:de:bvb:355-epub-294622, 2014

  39. Shibata, Y.; Shimizu, S.: On a resolvent estimate of the interface problem for the Stokes system in a bounded domain. J. Differ. Equ. 191(2), 408–444 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Starovoĭtov, V.N.: A model of the motion of a two-component fluid taking into account capillary forces. Prikl. Mekh. Tekhn. Fiz. 35(6), 85–92 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Starovoĭtov, V.N.: On the motion of a two-component fluid in the presence of capillary forces. Mat. Zametki 62(2), 293–305 (1997)

    Article  MathSciNet  Google Scholar 

  42. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Hall Press, Princeton, New Jersey (1970)

    MATH  Google Scholar 

  43. Takasao, K.; Tonegawa, Y.: Existence and regularity of mean curvature flow with transport term in higher dimensions. Math. Ann. 364(3–4), 857–935 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Abels.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abels, H., Liu, Y. Sharp Interface Limit for a Stokes/Allen–Cahn System. Arch Rational Mech Anal 229, 417–502 (2018). https://doi.org/10.1007/s00205-018-1220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1220-x

Navigation