Log in

Surface Plasmon Resonance of Nanoparticles and Applications in Imaging

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we provide a mathematical framework for localized plasmon resonance of nanoparticles. Using layer potential techniques associated with the full Maxwell equations, we derive small-volume expansions for the electromagnetic fields, which are uniformly valid with respect to the nanoparticle’s bulk electron relaxation rate. Then, we discuss the scattering and absorption enhancements by plasmon resonant nanoparticles. We study both the cases of a single and multiple nanoparticles. We present numerical simulations of the localized surface plasmonic resonances associated to multiple particles in terms of their separation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Huang, S.W., ODonnell, M., Day, K.C., Day, M. Kotov, N. and Ashkenazi S.: Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701 (2007)

  2. Ammari, H., Chow, Y.T., Liu, K., Zou, J.: Optimal shape design by partial spectral data. ar**v:1310.6098

  3. Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208, 667–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Anomalous localized resonance using a folded geometry in three dimensions. Proc. R. Soc. A 469, 20130048 (2013)

    Article  ADS  Google Scholar 

  5. Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of anomalous localized resonance II. Contemp. Math. 615, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ammari H., Ciraolo G., Kang H., Lee H., Yun K.: Spectral analysis of the Neumann–Poincaré operator and characterization of the stress concentration in anti-plane elasticity. Arch. Ration. Mech. Anal. 208, 275–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ammari H., Garnier J., Millien P.: Backpropagation imaging in nonlinear harmonic holography in the presence of measurement and medium noises. SIAM J. Imaging Sci. 7, 239–276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammari H., Iakovleva E., Lesselier D., Perrusson G.: MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29, 674–709 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, Vol. 162, Springer-Verlag, New York, 2007

  10. Ammari, H., Kang, H., Lee, H.: Layer Potential Techniques in Spectral Analysis. Mathematical Surveys and Monographs series, Vol. 153, Amer. Math. Soc., 2009

  11. Ammari H., Kang H., Lee H., Lim M., Yu S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73, 2055–2076 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ammari H., Khelifi A.: Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82, 749–842 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ammari, H., Millien, P., Ruiz, M., Zhang, H.: Mathematical analysis of plasmonic nanoparticles: the scalar case. ar**v:1506.00866

  14. Ammari H., Vogelius M., Volkov D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J. Math. Pures Appl. 80, 769–814 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anker J.N., Paigre Hall W., Lyandres O., Shah N.C., Zhao J., Van Duyne R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  16. Archambault A., Teperik T.V., Marquier F., Greffet J.J.: Surface plasmon Fourier optics. Phys. Rev. B 79, 195414 (2009)

    Article  ADS  Google Scholar 

  17. Baffou G., Girard C., Quidant R.: Map** heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)

    Article  ADS  Google Scholar 

  18. Baffou G., Quidant R.: Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013)

    Article  Google Scholar 

  19. Baffou G., Quidant R., Girard C.: Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009)

    Article  ADS  Google Scholar 

  20. Baffou G., Rigneault H.: Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84, 035415 (2011)

    Article  ADS  Google Scholar 

  21. Bonnetier, E., Triki, F.: Pointwise bounds on the gradient and the spectrum of the Neumann–Poincaré operator: the case of 2 discs. Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion, 81–91, Contemp. Math. Vol. 577, Amer. Math. Soc., Providence, RI, 2012

  22. Bonnetier E., Triki F.: On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D. Arch. Ration. Mech. Anal. 209, 541–567 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. El-Brolossy T., Abdallah T., Mohamed M.B., Abdallah S., Easawi K., Negm S., Talaat H.: Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Euro. Phys. J. 153, 361–364 (2008)

    Google Scholar 

  24. Buffa A., Costabel M., Sheen D.: On traces for \({H(\mathrm{curl}, \Omega)}\) in lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chapuis P.O., Laroche M., Volz S., Greffet J.J.: Naer-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution. Phys. Rev. B 77, 125402 (2008)

    Article  ADS  Google Scholar 

  26. Chen H., Shao L., Ming T., Sun Z., Zhao C., Yang B., Wang J.: Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6, 2272–2280 (2010)

    Article  Google Scholar 

  27. Colas des Francs G., Derom S., Vincent R., Bouhelier A., Dereux A.: Mie plasmons: modes volumes, quality factors, and coupling strengths (purcell factor) to a dipolar emitter. Int. J. Opt. 2012, 175162 (2012)

    Article  Google Scholar 

  28. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93. Springer, Berlin, 2012

  29. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory, Vol. 72. SIAM, Philadelphia, 2013

  30. Gil, M.I.: Norm Estimations for Operator Valued Functions and Applications, Vol. 192. CRC Press, Boca Raton, 1995

  31. Govorov A.O., Richardson H.: Generating heat with metal nanoparticles. NanoToday (1) 2, 20–39 (2007)

    Article  Google Scholar 

  32. Govorov A.O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N.A.: Gold nanoparticle ensembes as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006)

    Article  ADS  Google Scholar 

  33. Grieser D.: The plasmonic eigenvalue problem. Rev. Math. Phys. 26, 1450005 (2014)

    Article  MathSciNet  Google Scholar 

  34. Griesmaier R.: An asymptotic factorization method for inverse electromagnetic scattering in layered media. SIAM J. Appl. Math. 68, 1378–1403 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grua P., Morreeuw J.P., Bercegol H., Jonusauskas G., Vallée F.: Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Phys. Rev. B 68, 035424 (2003)

    Article  ADS  Google Scholar 

  36. Hao F., Nehl C.L., Hafner J.H., Nordlander P.: Plasmon resonances of a gold nanostar. Nano Lett. 7, 729–732 (2007)

    Article  ADS  Google Scholar 

  37. Helsing J., Perfekt K.M.: On the polarizability and capacitance of the cube. Appl. Comput. Harmon. Anal. 34, 445–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Homola J.: Electromagnetic theory of surface plasmons. Springer Ser. Chem. Sens. Biosens. 4, 3–44 (2006)

    Article  ADS  Google Scholar 

  39. Hutter E., Fendler J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)

    Article  Google Scholar 

  40. Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biomedical imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  41. Jain P.K., El-Sayed I.H., El-Sayed M.A.: Au nanoparticles target cancer. Nanotoday 2, 18–29 (2007)

    Article  Google Scholar 

  42. Kang H., Seo J.K.: Inverse conductivity problem with one measurement: uniqueness of balls in \({\mathbb{R}^3}\). SIAM J. Appl. Math. 59, 851–867 (1999)

    Article  MathSciNet  Google Scholar 

  43. Kellogg, O.D.: Foundations of Potential Theory. Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967

  44. Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185, 143–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Link S., Burda C., Nikoobakht B., El-Sayed M.A.: Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000)

    Article  Google Scholar 

  46. Mayergoyz I.D., Fredkin D.R., Zhang Z.: Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

  47. Mayergoyz I.D., Zhang Z.: Numerical analysis of plasmon resonances in nanoparticules. IEEE Trans. Mag. 42, 759–762 (2006)

    Article  ADS  Google Scholar 

  48. Mitrea D., Mitrea M., Pipher J.: Vector potential theory on nonsmooth domains in \({\mathbb{R}^3}\) and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3, 131–192 (1996)

    Article  MathSciNet  Google Scholar 

  49. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representat ions for Harmonic Problems, Springer-Verlag, New York, 2001

  50. Nelayah J., Kociak M., Stéphan O., García De Abajo F.J., Tencé M., Henrard L., Taverna D., Pastoriza-Santos I., Liz-Marzán L.M., Colliex C.: Map** surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

    Article  Google Scholar 

  51. Nguyen H.M., Vogelius M.S.: A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity. Ann. Inst. H. Poincar Anal. Non Linéaire 26, 2283–2315 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Oldenburg S.J., Averitt R.D., Westcott S.L., Halas N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)

    Article  ADS  Google Scholar 

  53. Pendry, J.B.: Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621-33 (1999)

  54. Rethfeld B., Kaiser A., Vicanek M., Simon G.: Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002)

    Article  ADS  Google Scholar 

  55. Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications. Cambridge University Press, New York, 2010

  56. Scholl J.A., Koh A.L., Dionne J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–428 (2012)

    Article  ADS  Google Scholar 

  57. Torres R.H.: Maxwell’s equations and dielectric obstacles with Lipschitz boundaries. J. Lond. Math. Soc. (2) 57, 157–169 (1998)

    Article  Google Scholar 

  58. Volkov A.N., Sevilla C., Zhigilei L.V.: Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl. Surf. Sci. 253, 6394–6399 (2007)

    Article  ADS  Google Scholar 

  59. Vu X.H., Levy M., Barroca T., Tran H.N., Fort E.: Gold nanocrescents for remotely measuring and controlling local temperature. Nanotechnology 24, 325501 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ammari.

Additional information

Communicated by W. E

This work was supported by the ERC Advanced Grant Project MULTIMOD-267184.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, H., Deng, Y. & Millien, P. Surface Plasmon Resonance of Nanoparticles and Applications in Imaging. Arch Rational Mech Anal 220, 109–153 (2016). https://doi.org/10.1007/s00205-015-0928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0928-0

Keywords

Navigation