Log in

Standing Pulse Solutions to FitzHugh–Nagumo Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Reaction–diffusion systems serve as relevant models for studying complex patterns in several fields of nonlinear sciences. A localized pattern is a stable non-constant stationary solution usually located far away from neighborhoods of bifurcation induced by Turing’s instability. In the study of FitzHugh–Nagumo equations, we look for a standing pulse with a profile staying close to a trivial background state except in one localized spatial region where the change is substantial. This amounts to seeking a homoclinic orbit for a corresponding Hamiltonian system, and we utilize a variational formulation which involves a nonlocal term. Such a functional is referred to as Helmholtz free energy in modeling microphase separation in diblock copolymers, while its global minimizer does not exist in our setting of dealing with standing pulse. The homoclinic orbit obtained here is a local minimizer extracted from a suitable topological class of admissible functions. In contrast with the known results for positive standing pulses found in the literature, a new technique is attempted by seeking a standing pulse solution with a sign change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allen S.M., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Three sources and three component parts of the concept of dissipative solitons. Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol. 751. Springer, Berlin, 2008

  3. Alexander J., Gardner R., Jones C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bertotti M.L., Montecchiari P.: Connecting orbits for some classes of almost periodic Lagrangian systems. J. Differ. Equ. 145, 453–468 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bisgard J.: Homoclinics for a Hamiltonian systems with wells at different levels. Calc. Var. 29, 1–30 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bode M., Liehr A.W., Schenk C.P., Purwins H.-G.: Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system. Physica D 161, 45–66 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bolotin S., Mackay R.: Multibump orbits near the anti-integrable limit for Lagrangian systems. Nonlinearity 10, 1015–1029 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Buffoni B., Sere E.: A global condition for quasi-random behavior in a class of conservative systems. Commun. Pure Appl. Math. 49, 285–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carpenter G.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equ. 23, 335–367 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen C.-N., Hu X.: Stability criteria for reaction-diffusion systems with skew-gradient structure. Commun. PDE 33, 189–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen C.-N., Hu X.: Maslov index for homoclinic orbits of Hamiltonian systems. Ann. Inst. H. Poincare Anal. Non Linearie 24, 589–603 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Chen C.-N., Tzeng S.-Y.: Periodic solutions and their connecting orbits of Hamiltonian systems. J. Differ. Equ. 177, 121–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Oshita Y.: An application of the modular function in nonlocal variational problems. Arch. Rational Mech. Anal. 186, 109–132 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Conley, C.: On travelling wave solutions of nonlinear diffusion equations. Dynamical Systems Theory and Applications (Ed. Moser, J.). Lecture Notes in Physics, vol. 38. Springer, Berlin, 1975

  15. Coti Zelati V., Rabinowitz P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. math. Soc. 4, 693–727 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dancer E.N., Yan S.: A minimization problem associated with elliptic systems of FitzHugh–Nagumo type. Ann. Inst. H. Poincaré Anal. Nonlinéaire 21, 237–253 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  18. del Pino M., Kowalczyk M., Wei J.: The Toda system and clustering interfaces in the Allen-Cahn equation. Arch. Rational Mech. Anal. 190, 141–187 (2008)

    Article  ADS  MATH  Google Scholar 

  19. de Figueiredo D.G., Mitidieri E.: A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal. 17, 836–849 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Doelman A., van Heijster P., Kaper T.: Pulse dynamics in a three-component system: existence analysis. J. Dyn. Differ. Equ. 21, 73–115 (2008)

    Article  Google Scholar 

  21. Evans J.W.: Nerve axon equations: III. Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–594 (1972)

    Article  MATH  Google Scholar 

  22. Evans J.W.: Nerve axon equations. IV:. The stable and the unstable impulse. Indiana Univ. Math. J. 24, 1169–1190 (1975)

    Article  MATH  Google Scholar 

  23. Fife P.C.: Long time behavior of solutions of bistable nonlinear diffusion equations. Arch. Rational Mech. Anal. 70, 31–46 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Fife P.C., Mcleod J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. FitzHugh R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  ADS  Google Scholar 

  26. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  27. Hamley I.W.: The Physics of Block Copolymers. Oxford University Press, Oxford (1999)

    Google Scholar 

  28. Hastings S.P.: On the existence of homoclinic and periodic orbits for the FitzHugh–Nagumo equations. Quart. J. Math. Oxford Ser. 2(27), 123–134 (1976)

    Article  MathSciNet  Google Scholar 

  29. Hastings S.P.: On traveling wave solutions of the Hodgkin-Huxley equations. Arch. Rational Mech. Anal. 60, 229–257 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hodgkin A.L., Huxley A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  31. Jones C.: Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Am. Math. Soc. 286, 431–469 (1984)

    Article  MATH  Google Scholar 

  32. Kondo S., Asai R.: A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376(31), 765–768 (1995)

    Article  ADS  Google Scholar 

  33. Langer, R.: Existence of homoclinic travelling wave solutions to the FitzHugh–Nagumo equations. Ph.D. Thesis, Northeastern University, 1980

  34. Leibler L.: Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980)

    Article  ADS  Google Scholar 

  35. Liehr, A.W.: Dissipative solitons in reaction-diffusion systems. Private communication

  36. Mather J.N.: Variational construction of orbits of twist diffeomorphisms. J. Am. math. Soc. 4, 207–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98, 123–142 (1986)

    MathSciNet  ADS  Google Scholar 

  38. NagumoJ. Arimoto S., Yoshizawa S.: An active pulse transmission line simulating nerve axon. Proc. I. R. E. 50, 2061–2070 (1962)

    Article  Google Scholar 

  39. Nishiura Y., Ohnishi I.: Some mathematical aspects of the micro-phase separation in diblock copolymers. Physica D 84, 3139 (1995)

    Article  MathSciNet  Google Scholar 

  40. Nishiura Y., Teramoto T., Yuan X., Udea K.-I.: Dynamics of traveling pulses in heterogeneous media. Chaos 17(3), 037104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ohta T., Kawasaki K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  ADS  Google Scholar 

  42. Oshita Y.: On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh–Nagumo equations in higher dimensions. J. Differ. Equ. 188, 110–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Protter, M.H. Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, 1967

  44. Rabinowitz P.H.: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. H. Poincaré Anal. Nonlinéaire 6, 331–346 (1989)

    MathSciNet  MATH  Google Scholar 

  45. Rabinowitz, P.H.: Some recent results on heteroclinic and connecting orbits of Hamiltonian systems. Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations (Eds. Girardi, M., Matzeu, M., Pacella, F.). Pitman Res. Notes Math. Ser., vol. 243, 157–168, 1992

  46. Rabinowitz P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 114, 33–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rabinowitz, P.H., Stredulinsky, E.W.: Extensions of Moser-Bangert theory: local minimal solutions. Progress in Nonlinear Differential Equations and their Applications, vol. 81. Birkhauser/Springer, New York, 2011

  48. Reinecke C., Sweers G.: A positive solution on \({\mathbb{R}^n}\) to a equations of FitzHugh–Nagumo type. J. Differ. Equ. 153, 292–312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ren X., Wei J.: On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5, 193–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw Hill, 1964

  51. Scheel A.: Coarsening fronts. Arch. Rational Mech. Anal. 181, 505–534 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. SerraE. Tarallo M., Terracini S.: On the existence of homoclinic solutions to almost periodic second order systems. Ann. Inst. H. Poincarè Anal. Non Lineaire 13, 783–812 (1996)

    Google Scholar 

  53. Smoller J.: Shock Waves and Reaction Diffusion Equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  54. Turing A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  Google Scholar 

  55. Tsai, H.-J.: Numerical studies in reaction-diffusion systems. Thesis, National Changhua University of Education, 2009

  56. Yanagida E.: Standing pulse solutions in reaction-diffusion systems with skew-gradient structure. J. Dyn. Differ. Equ. 14, 189–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yanagida E.: Stability of fast travelling pulse solutions of the FitzHugh–Nagumo equations. J. Math. Biol. 22, 81–104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wei J., Winter M.: Clustered spots in the FitzHugh–Nagumo system. J. Differ. Equ. 213, 121–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Nien Chen.

Additional information

Communicated by P. Rabinowitz

Dedicated to Ta-Chung Lee on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CN., Choi, Y.S. Standing Pulse Solutions to FitzHugh–Nagumo Equations. Arch Rational Mech Anal 206, 741–777 (2012). https://doi.org/10.1007/s00205-012-0542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0542-3

Keywords

Navigation